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GP1000 Has Rewritable Microcode
Imsys Processor Executes Java Bytecodes and Concurrent Microcode Processes
by Tom R. Halfhill

Never mind RISC and CISC. “NISC” and “WISC” are
some of the fanciful terms suggested for a unique embedded
processor from Sweden that has rewritable microcode,
microcode-level concurrency, native Java bytecode execu-
tion, multiple register banks, and other unusual features.

Imsys AB (Stockholm) has designed the new chip,
dubbed the GP1000, for two roles. Conservatively, it’s a low-
cost (under $25), low-power (under 300 mW at 33 MHz)
controller for multifunction peripherals—the combination
printer/scanner/fax/copier devices that are popular in home
offices and other crowded workplaces. For that application,
the GP1000 provides concurrent microcoded processes that
support scanning, image buffering, compression/decom-
pression, halftone screening, printing, and other imaging
tasks that normally would require high-level programming.

More ambitiously, Imsys has spun off subsidiary Clean
Bean to market the CPU’s Java capabilities. By programming
the microcode to execute Java bytecodes and some higher-
level functions of a Java virtual machine (JVM), Imsys has
created one of the few Java chips not derived from Sun’s Pico-
Java. In this role, the GP1000 is aimed at smart appliances
that can benefit from Java’s network and platform portability:
handheld computers, multifunction cell phones, point-of-
sale terminals, and other intelligent devices.

The rewritable microcode allows Imsys to customize the
GP1000 for a wide range of tasks—essentially creating new
instruction sets for almost any purpose. For example, a net-
work router could do table lookups and checksum calcula-
tions in a microcode process, or a custom assembly-language
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instruction could speed up an application-specific loop. It’s
like inline assembly optimizing in C, except one level deeper.

One GP1000 customer refers to this chameleon-like
capability as NISC (no instruction set computing). Imsys
engineers aren’t too fond of that term, though. They’re a lit-
tle more amenable to WISC (writable instruction set com-
puting), which was the basis of a theoretical processor
described in 1987 by maverick CPU architect Phil Koopman.

It’s Really CISC—With Twists
At its core, the GP1000 is a CISC architecture that inherits its
designers’ experience with document processing and virtual
machines. Its earliest ancestor was a three-board TTL proces-
sor in the early 1980s that had a microcoded virtual machine
for the UCSD p-System. A later implementation took the
form of a gate-array chip for desktop publishing terminals.

As Figure 1 shows, the GP1000 is a scalar CPU with a
single ALU, a MAC unit (accessible only from microcode),
multiple register banks, an 8/16-bit memory bus, and a sep-
arate 8-bit data I/O bus with four DMA channels. The I/O
bus runs at clock ratios of 1:1, 1:2, or 1:4 relative to the core
frequency, at bus speeds up to 33 MHz. Current samples of
the GP1000 are running at a core speed of 33 MHz. The engi-
neers believe they can push the chip to 50 MHz in the cur-
rent process with a minor tweak of the microcode timing.

There are also 24 I/O pins and 16 output pins for serial
signals. A microcode process can read or write a group of
eight pins at the same clock frequency as the I/O bus.

The data bus requires a small amount of external glue
logic, currently implemented in an FPGA. The type of FPGA
depends on the I/O requirements. On one sample board,
Imsys uses a small device that costs about $3; another board
has a more expensive 208-pin FPGA with a PCI interface.
Even the small one can handle all four DMA channels, yield-
ing a total throughput of 33 Mbytes/s.

LCD panels are pretty standard on multifunction
peripherals and the GP1000 can support virtually any kind
of LCD via microcode routines and its programmable out-
put ports. If the LCD has a frame buffer, the GP1000 writes
to it only when the image changes, so the serial ports are fast
enough for that purpose. If the LCD doesn’t have a frame
buffer, the higher demands for refreshing the image require
DMA transfers over the data bus. There’s enough bandwidth
to drive a 640 × 480-pixel color LCD—a more luxurious
screen than a peripheral is likely to have. A more reasonable
128 × 64-pixel monochrome LCD consumes only 9% of the
I/O bus’s DMA capacity.

The GP1000 is available directly from Imsys/Clean
Bean. Imsys’s manufacturing partner (and one of the first
I/O Bus
Logic

I/O Ports
3 × 8 Signals

Output Ports
2 × 8 Signals

Microcode RAM
18 Kbytes

Registers
33 GPRs
and SPRs

Microcode
Control Logic

DRAM
Interface MAC

Shift & mask,
multiplier,
extended

accumulator

Registers

8 banks
 of GPRs,

string buffers,
top of stack

ALU

32-kHz
Oscillator

Microcode ROM
36 Kbytes

8/16

8

PLL
66-MHz
Oscillator

Elapsed-Time Counter

DMA Control

I/O Buffer (2K SRAM)

Figure 1. The GP1000 is a scalar embedded processor with large
blocks of SRAM and ROM to store its programmable microcode.
The MAC unit is accessible only with microinstructions.
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customers for the chip) is Stockholm-based Ericsson Com-
ponents. Ericsson contributed a great deal of expertise
toward shrinking the design to fit a 3.3-V, 0.35-micron,
three-layer-metal CMOS process. The fab is UMC in Taiwan.

At 0.35 micron, the GP1000’s die measures a diminutive
16 mm2—with only about 20% of that area consumed by the
core logic, as Figure 2 shows. On-chip SRAM and ROM, filled
mostly with microcode, account for the remainder of the
1.4-million-transistor die. It’s packaged in a 144-pin low-pro-
file quad flat pack (LQFP) that’s 1.6 mm high.

Imsys designed the logic elements to be easily separable
from the on-chip memory if customers have a more special-
ized application in mind. The core has approximately 70,000
logic transistors. A synthesizable VHDL version is scheduled
to be finished by March, and a process shrink to 0.25 micron
should follow shortly afterward. That shrink would also
enable higher integration. Stefan Blixt, chief architect of the
GP1000, thinks he can add 1.5M of DRAM to the processor
while holding the die to 36 mm2 or less at 0.25 micron.

Triple-Threat Multitasking Is Unusual
One of the most interesting features of the GP1000 is its
multiple levels of concurrency. Potentially, there are three:
concurrent microcode processes, assembly-language multi-
tasking, and Java multithreading. Rewritable microcode is
the foundation of this unusual architecture.

The GP1000 stores most of its microcode in 36 Kbytes
of on-chip ROM and the rest in 18 Kbytes of on-chip SRAM.
Therefore, two-thirds of the microcode is static and one-third
is rewritable. The microcode ROM and SRAM are organized
in 72-bit words to match the length of the microinstructions.
The microcode cycle time is 30 ns at a PLL-oscillator fre-
quency of 66 MHz. Most of the microinstructions execute in
two cycles while a few require three. An assembly-level
instruction requires at least two microinstructions.

At startup, a boot loader in the processor’s ROM loads
the rewritable portion of the microcode from an off-chip
source, such as EPROM or flash ROM. After the system boots
and initializes memory, the processor can load new micro-
code from system DRAM. This sequence allows customized
or patched microcode to reside in EPROM, flash ROM, or
DRAM. After startup, a program can use a special assembly-
language instruction to load fresh microcode at any time—an
intriguing (and potentially hair-raising) feature that allows
applications to alter the CPU’s instruction set on the fly.

A control microprogram written entirely in micro-
instructions handles concurrency at the microcode level. It’s
almost a tiny operating system. It manages interrupts, I/O,
and process scheduling for microcode processes. And those
processes are a far cry from the atomic assembly-language
instructions that are normally the raison d’être for microcode.
In the GP1000, a microcode process can perform such high-
level image-processing tasks as halftone screening, adaptive
thresholding, and RGB-to-CMYK colorspace conversions. For
example, one microcoded assembly instruction designed for
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use with multifunction peripherals can apply CCITT com-
pression to an entire scan line of image data at once.

In effect, the application software drives the instruction
set of this processor, not the other way around. One common
use of this feature will be to compress application-specific
loops. An assembly instruction sequence such as MOV-CMP-

BEQ (move to register, compare, and branch if equal) can col-
lapse into a single assembly instruction called MCB. Combin-
ing instructions in this way doesn’t change the total execution
latency, but it saves overhead, because the CPU doesn’t have
to fetch as many instructions; off-chip references are espe-
cially costly for a small processor with an 8-bit bus.

An example of the efficiency of this approach is an opti-
mized assembly instruction that accelerates error-diffusion
processing. A loop in this algorithm that required 23 instruc-
tions per iteration on a Pentium was reduced to a GP1000
instruction that needed only 8.25 microinstructions (eight
per loop plus one every fourth lap). The GP1000 essentially
matched the performance of a 133-MHz Pentium, even
though the Pentium is a much more powerful processor.

The GP1000’s malleable instructions wouldn’t be possi-
ble in a RISC architecture that forgoes microcode in favor of
hard-wired, fixed-length instructions with finely tuned laten-
cies. Assembly instructions on the GP1000 can have arbitrary
lengths and latencies. Normally, the disadvantages of such an
extreme CISC philosophy would be difficult instruction
decoding and the nightmarish task of synchronizing parallel
execution pipelines. But the GP1000’s fixed-length micro-
instructions simplify the decoding somewhat, and its scalar
core doesn’t have multiple pipelines to worry about.
Figure 2. Initial GP1000 chips are manufactured on a 3.3-V
0.35-micron process that fits 1.4 million transistors on a 4 × 4-mm
die. The core logic accounts for only about 20% of that area.
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The GP1000 is currently sampling at 33 MHz (66-MHz
oscillator), and production shipments are scheduled for
1Q99. Its list price will be $25 in 10,000-unit quantities. A
development kit will also be available in 1Q99 for $995.
For more information, access www.javamachine.com.
Microcode programming isn’t something that Imsys is
dumping on customers. It will be done in house to customer
specifications, using a visual development tool that Imsys cre-
ated for that purpose. (It’s an extension of the visual assem-
bler that Imsys supplies to customers.) Imsys doesn’t think
many customers will be eager to tackle microcode program-
ming anyway. Even a veteran assembly-language coder might
blanch at the 72-bit-long microinstructions—each one has
about two dozen fields and can jump to another address.

Java Was an Afterthought
Development was already well under way when Imsys engi-
neer Roger Sundman wondered if the microcode could han-
dle Java bytecode. Compared to image processing, Java is
almost easy. Imsys engineers have already implemented most
of the 226 Java bytecode instructions in microcode for the
GP1000, but they will probably stop short of implementing
all of them. (In comparison, Sun’s MicroJava 701 implements
about 170 bytecode instructions in hard-wired logic, executes
about 30 in microcode, and traps the remaining bytecodes in
software.) Some instructions—such as the one that creates a
new object—are exceedingly complex and don’t occur often
enough in programs to warrant native support.

Most of the Java-specific microcode loads into the
GP1000’s on-chip SRAM at bootup, but the bytecode decod-
ing table is stashed in on-chip ROM. Imsys is also imple-
menting some higher-level Java functions in microcode. For
example, the JVM’s garbage collector is a mark-and-sweep
algorithm that is notorious for consuming CPU cycles at the
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most inopportune moments. Imsys engineers were hard at
work this fall rewriting the garbage collector in microcode.

The type of JVM can vary according to the application.
For multifunction peripherals, Imsys says Embedded Java
(see MPR 4/20/98 p. 8) is best. Personal Java is a possibility
for consumer-electronics devices. After a process shrink to
0.25 micron, the GP1000 might be suitable for Java Card, a
JVM that meets the ISO 7816-4 standard for smart cards.

Imsys claims that the advantages of native Java support
are faster application development, easier networking, and
consumer-friendly field upgrades. High-level applications
for intelligent devices that have communications capabilities
(such as smart cell phones and multifunction peripherals)
are certainly easier to write in Java than in assembly language
or C/C++. Such devices could use Java’s networking capabil-
ities to download software patches and upgrades with little
or no user intervention. And native Java execution conserves
memory that otherwise would be occupied by a Java byte-
code interpreter and a just-in-time (JIT) compiler.

Of course, an embedded processor that avoids Java
altogether could conserve even more memory. The GP1000’s
success as a Java chip will largely depend on the popularity of
Sun’s Personal Java and Embedded Java platforms. The out-
look for those Java subplatforms is uncertain—they’re even
newer and less mature than their parent platform.

But Java isn’t the only programming option. In addi-
tion to the assembler that Imsys provides with the develop-
ment kit, there’s also a C++ tool that compiles straight to
Java bytecodes. This option is for customers who aren’t
enamored with Java or must port existing code to the chip. In
an interesting twist, Imsys subcontracted the development of
the C++ compiler to a Russian company in St. Petersburg
that’s run by a former Soviet submarine captain.

Multiple Register Banks Aid Context Switching
Another unusual feature of the GP1000 is its register file. It
has eight duplicate banks of registers for context switching
between concurrent processes.

As Figure 3 shows, most of the registers reside in 1K
of on-chip memory, which is divided into four 256-byte
regions. (33 GPRs and several special registers reside else-
where on the chip.) The GP1000 uses one of the 256-byte
regions as a buffer for complex string instructions, another
for the Java stack (or any other stack, for that matter), and a
third for microprograms. The remaining 256-byte region is
subdivided into 16 blocks, each containing 16 bytes. Half of
those blocks store the eight banks of GPRs; the other blocks
contain special registers not visible to programmers.

Each bank has seven 8-bit GPRs (with 8080/Z80 mne-
monics) that programmers may combine into three 16-bit
GPRs. These are the only registers visible to high-level pro-
grams. The banks support up to eight foreground processes
that can interrupt each other or be interrupted by microcode
processes without incurring the overhead of dumping the
registers to memory and restoring them later.
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Figure 3. Eight register banks allow the GP1000 to switch among
concurrent processes without saving or restoring registers.
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The other registers in each bank are invisible to high-
level programs. They serve various internal purposes for
microcode processes, native Java bytecode execution, and so
forth. Imsys reserves some spaces for future use.

The GP1000’s MAC unit, like many of its registers, is
not directly accessible from high-level software. It’s avail-
able to microcode processes, which can execute an 8 × 8-bit
multiply-add operation plus a multiway jump in a single
microinstruction. The MAC also comes into play when
standard assembly instructions or bytecode instructions
perform multiplication. The MAC’s accumulator is 18 bits
wide to store the extended results of iterative operations.

Power Consumption Fits Mobile Requirements
Imsys has been testing the first samples of the GP1000 since
July. According to architect Blixt, the part consumes less than
400 mW at 33 MHz when executing a worst-case loop that
exercises the ALU, MAC, string buffer, and some registers dur-
ing each cycle. A typical program consumes 300 mW or less.

Although Imsys has found no bugs, the engineers have
identified a shortcoming that was not apparent during the
early design stages. The microcode ROM and SRAM both
draw power at the same time, even though only one is ac-
cessed each cycle. Alternating power between the memories
as needed would be more efficient. Blixt thinks this could cut
power consumption by 35% to 40%; the memories now con-
sume about 75% of the chip’s power.

Such a change might not have to wait until the next full
revision. Imsys has halted some partially finished wafers in
the fab and is preserving them in nitrogen gas, hoping it can
implement the change in the remaining masks. If that’s possi-
ble, the power consumption for a typical program could drop
to around 200 mW at 33 MHz in the 0.35-micron process.
More savings would accompany a shrink to 0.25 micron.

Power consumption is already well below the require-
ments of line-powered devices, such as multifunction peri-
pherals. Imsys’s goal, however, is to reduce the power enve-
lope so the GP1000 will be suitable for a wider range of
battery-powered mobile devices.

Difficult to Categorize
Rewritable microcode isn’t a new idea. Neither is microcode
support for high-level languages. Digital’s LSI-11 had a writ-
able control store, and Lawrence Livermore Laboratory imple-
mented UCSD Pascal in LSI-11 microcode. The Burroughs
B1700 had microcoded instruction sets for BASIC, FORTRAN,
COBOL, and RPG-II. In the 1980s, LISP machines from Texas
Instruments and Symbolics had microcoded garbage collec-
tors. Even Intel’s P6-series processors have a tiny amount of
rewritable microcode to allow patches.

But among current processors, the GP1000’s com-
bination of rewritable microcode, native Java execution,
microcode-level concurrency, microcode support for image
processing, and multiple register banks is unique. Those
attributes also make it difficult to compare the GP1000 with
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competing products. Clearly, it’s more than a run-of-the-mill
controller for multifunction peripherals. Even among Java
chips, the GP1000 is an oddball. It wasn’t originally designed
as a Java chip, it owes nothing to Sun’s widely licensed pico-
Java core, and it can change identities literally in a flash.

Sun’s MicroJava 701 (see MPR 11/17/97, p. 9) is more
like a mainstream desktop processor in terms of resources.
As Table 1 shows, the 701 easily outclasses the GP1000 in that
regard, but it also has a much larger die on a smaller process
and dissipates ten times as much power. Without bench-
marks, it’s hard to compare these widely disparate Java chips,
but they’re obviously designed for different applications. The
power requirements alone make the GP1000 more suitable
for mobile devices.

The GP1000 also is comparable to Patriot Scientific’s
PSC1000 (see MPR 4/15/96 p. 1), another Java chip that
began as something else (a stack-oriented Forth chip). The
PSC1000 is more of a general-purpose microcontroller and
sells for under $10. Its approach to Java is quite different: a
custom bytecode verifier maps bytecodes to native CPU
instructions. And it lacks the GP1000’s microcode-level con-
currency and image-processing features.

Until the fog clears over the unproven market for Java
chips, the GP1000’s future in that role is uncertain. Fortu-
nately, Imsys hasn’t lost sight of its original goal of designing
a versatile CPU for multifunction peripherals. Although
Imsys is a small company focused on development, Ericsson
and another unnamed business partner will help Imsys/
Clean Bean market the GP1000 as both a Java chip and a
peripheral controller. We will see how many customers take
advantage of this processor’s unique capabilities.—

Tom R. Halfhill has been a technology writer since 1982
and was formerly a senior editor at BYTE Magazine. Tom can
be contacted at halfhill@hooked.net.
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Feature Imsys GP1000 Sun MicroJava 701
CPU Frequency 33 MHz 133–200 MHz

Clock Ratios 1:1, 1:2, 1:4 1:2, 1:3, 1:4

Memory Bus 8/16 bits, to 128M 32/64 bits, to 256M
Transistors (total) 1.4 million 4.1 million
Transistors (core) 70,000 n/a
µCode ROM/RAM 36/18 Kbytes n/a

Rewritable µcode; Native Java ex;
µcode concurrency; Integrated PCI ctl;

Native Java ex; Memory controller;
8 register banks Floating-point unit

Process Technology 0.35-micron CMOS 0.25-micron CMOS
Voltage 3.3 V 2.5 V (3.3-V I/O)
Die Size 16 mm2 67 mm2

Packaging 144-pin LQFP 316-pin BGA
Power Dissipation <300 mW @ 33 MHz <4 W @ 200 MHz
Availability 1Q99 1Q99

Special Features

Bus Frequency 33 MHz 50–100 MHz (mem),
33/66 MHZ (PCI)

Data Bus 8 bits, 4 DMA ch 8/16/32-bit I/O,
32-bit PCI

Table 1. The GP1000 is aimed at multifunction peripherals and
mobile Java devices. Sun’s more powerful 701 is primarily for sim-
ilar appliances. n/a = information not available (Source: vendors)
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