
t Magic
osoft Has a Plan, TooE

M
B

E
D

D
E
D

by Tom R. Halfhill

As if “write once, run anywhere” weren’t an ambitious
enough target, Sun is now aiming for “write once, run every-
where.” Sun’s new Java-based Jini technology tries to make it
easier for IT administrators and befuddled users to add
hardware devices and software services to networks. “Plug
and work, not plug and play” is the new mantra.

Jini leverages Java’s ability to move program objects, in
the form of bytecode, over networks and run them on any
device that has a Java virtual machine (JVM). Today, that
ability allows any PC with a JVM-enabled Web browser to
run a Java applet, without the need to install native binary
code. When the applet’s task is done, it goes away, leaving no
permanent mark on the system. Jini extends that model to all
interactions between devices on networks. Any kind of client
can interact with anything else (hardware devices or software
services) without the need to permanently install a native
program or device driver.

One goal is to solve the problem of replicating native
device drivers across an unmanageable variety of clients. With
new types of clients emerging all the time, the current driver
model will soon reach the breaking point. The larger vision,
however, is to make networks more friendly and more fluid.
Anybody from an IT administrator to a casual home user
should be able to plug any kind of device into a LAN without
fussing over control panels, property sheets, registries, IP
addresses, and subnet masks. The network should instantly
adapt to the new arrival. The device should automatically gain

Sun’s Jini: Science, No
The Goal Is Smarter Networks, But Micr
© M I C R O D E S I G N R E S O U R C E S M A R C H
access to hardware and software services on the network—or,
if the device has services of its own to offer, other clients
should automatically gain access to them. If a device leaves the
LAN, the network should adjust to that, too.

Realizing this dream means adding more intelligence to
devices and networks—intelligence in the form of process-
ing power and software. That has obvious implications
(mostly good ones) for vendors of embedded hardware and
software. If Jini makes it easier to manage and expand net-
works, it could encourage the development and acquisition
of more networking products. It could also improve the out-
look for home networking, a potentially lucrative market
that’s the target of several other industry initiatives.

Jini sounds wonderful but isn’t a clear winner. In addi-
tion to the usual technical challenges, Jini faces opposition
from an alternative proposed by Microsoft: Universal Plug
and Play (UPnP). Jini and UPnP take different but similar
technical approaches to the same problems.

Whenever Microsoft and Sun go head to head, market-
ing becomes as important as technology. Microsoft has much
more influence over the evolution of the PC platform than
Sun does. Although neither Jini nor UPnP is PC-specific, the
need to fit into a Windows-centric world means that Jini
faces an uphill battle for acceptance.

Abstracting Device Drivers
As Figure 1 shows, Jini relies on three components: a lookup
service that allows clients to find services on networks,
defined interfaces that allow clients and services to interact
with each other, and a programming model based on Java
(or at least, any programming language that compiles to
Java bytecode).

Java’s primary role is to solve the device-driver dilemma.
Allowing clients as disparate as a Palm handheld computer
and a Windows PC to share the same networked laser printer
or flatbed scanner might normally require a client-specific
driver for every conceivable type of device as well as a reposi-
tory for the drivers. As the definition of a network device
expands to include everything from mobile phones and digi-
tal cameras to personal organizers and video-game consoles,
the drivers will start multiplying like digital rabbits.

Jini divides a driver’s functions into two parts. Ideally,
low-level code that drives the hardware runs on the device
itself. Developers don’t have to write this code in Java, and
they probably won’t. Instead, they can wrap native code in
Jini classes that provide well-defined interfaces to other
devices on the network. Devices interact by calling those
interfaces, using Java remote method invocations (RMIs), as
Figure 2 shows.
Proxy relationship

PDA

PC
(JVM)

Printer

PC
(JVM)

21

Server

Jini
Lookup Service

JVM

3

Figure 1. Jini services use RMI to interact over networks. Services
without a Java virtual machine can use another service as a proxy.
Newly attached devices (1) register with the lookup service (2). In
response to queries, the lookup service arranges links (3) between
clients and services. Clients and devices talk directly via RMI.
2 9 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

2 S U N ’ S J I N I : S C I E N C E , N O T M A G I C

E
M

B
E
D

D
E
D

Devices don’t have to be capable of running a JVM if
another device on the network acts as a proxy. The proxy can
be a server or any client that has a JVM. Devices that use ser-
vices and devices that provide services can avoid having local
JVMs if they negotiate through proxies. Although using a
proxy may be less efficient, Jini offers these options so devel-
opers have more latitude and so existing devices can take
advantage of Jini.

Xerox has demonstrated this capability by adapting its
DocuPrint N17 network laser printer to work with Jini.
According to Xerox, the difficulty of adding a Jini wrapper to
the existing driver was minimal.

When a new Jini device arrives on a network, it sends
out a Jini-specific multicast packet to find a Jini lookup ser-
vice (or a proxy, if the device needs one). Upon finding the
lookup service—which probably resides on a server, perhaps
integrated with a standard directory service—the device
joins the Jini “federation” by first obtaining an RMI reference
to the lookup service. Then it uses RMI to send the lookup
service a Java object that describes the device’s capabilities. If
the device is a printer, for example, it will identify itself as
such and enumerate its properties (its output resolution,
whether it can print in color or in monochrome, the config-
uration of its paper trays, and so on).

Clients that need services can query the lookup service
to see what’s available. Because Jini encapsulates the inter-
faces within Java objects, queries can pass Java types as para-
meters. A multifunction peripheral could respond as a
300-dpi printer, a 200-dpi fax machine, or a 600-dpi scanner,
depending on what kind of service a client wants. In con-
trast, an ordinary network directory might opaquely describe
the same device as “HP MFP—ACCT DEPT.”

After locating a service, the client (or its proxy) receives
a Java object that contains the interfaces to that service. From
that point, the client communicates directly with the pro-
vider of the service. Jini’s lookup service steps out of the way;
it’s a matchmaker, not a chaperone.

Jini doesn’t define exactly how a client and a service
must converse through their interfaces. The bitstream be-
tween them is private. In Xerox’s demo, a laptop computer
sent a document to the N17 laser printer through a PC acting
as a proxy by using the standard Unix line printer (LPR)
protocol. The N17’s native device driver was not installed on
the laptop. The Jini objects that enabled this interaction
remained on the laptop only until the print job was finished.

Jini also allows proxies to poll a network in search of
new devices and draft them into a Jini federation. This allows
a Jini lookup service to assimilate non-Jini devices that don’t
know how to ask for a proxy.

Essentially then, Jini inserts an abstraction layer of Java
code between the consumers and providers of services on
networks. Although this extra level of indirection is less effi-
cient than a local, native device driver, it does address the
problem of writing drivers for every conceivable client-device
combination. Clients and devices deal with each other only
© M I C R O D E S I G N R E S O U R C E S M A R C H
through their Jini interfaces. And because those interfaces are
Java objects, they’re compatible with different platforms and
can move freely around a network.

The Incredible Shrinking JVM
Sun says the ideal Jini device would have enough CPU
cycles, nonvolatile storage, and memory to support a JVM,
the required Java class libraries, the new Jini classes, and
whatever additional software (such as a user interface) the
maker of the device deems necessary. If a device already
meets those requirements—as in the case of a PC—the new
Jini classes add only about 48K of additional code to the
core Java platform. But printers, scanners, disk drives,
handheld computers, and most other embedded devices are
rarely so well endowed. They must either learn to speak Java
or use a proxy.

At this point, there are barriers to embedding Java in a
device. Part of the problem is that Jini is so new (Sun formally
introduced it in January) that not everything is in place yet.
For instance, the version of RMI that Jini requires is the one
included in the latest Java 2 release (formerly known as 1.2).
But the EmbeddedJava (eJava) and PersonalJava (pJava) sub-
platforms that are best suited to small devices don’t yet sup-
port Java 2. Sun expects them to catch up later this year.

The cost of embedding Java in a small device has been
high because JVMs and the Java class libraries normally
require megabytes of storage. Recently, lighter-weight JVMs
have been appearing. Two examples are Insignia Solutions’
Jeode and Oberon’s JBed, which require as little as 42K of
ROM and RAM, although an implementation capable of
supporting Jini would require more like 256K–640K. They
also need a 32-bit CPU. That’s not a major obstacle; claims
Jini chief architect Jim Waldo, “I took apart my microwave
oven and discovered it has a Motorola 68000. It could run
Unix System V.”

Java chips based on Sun’s PicoJava core, such as the
MicroJava 701, might be suitable for relatively high-end
devices like Sun’s network computers. But they will probably
be too expensive, and are certainly too power hungry, for
small or mobile embedded devices such as smart phones and
Jini Hardware Service

Jini Software Service

Jini Client

(any client)

JVM
(or Jini proxy)

Low-Level
Device Driver

JVM
(or Java wrapper)

JVM
(or Java wrapper)

Java Program
(or native code)

RMI over network

Private or Native
Protocol

Figure 2. Jini services can be provided by hardware devices (print-
ers, scanners, fax machines, etc.) or by programs written in Java or
native code.
2 9 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 S U N ’ S J I N I : S C I E N C E , N O T M A G I C

E
M

B
E
D

D
E
D

handheld computers. Some better bytecode-savvy alterna-
tives might be Patriot Scientific’s PSC1000 (see MPR 4/15/96,
p. 1) or Imsys’s GP1000 (see MPR 12/28/98, p. 14).

Dallas Semiconductor has another solution: a Jini-
enabling chip set. It consists of a microcontroller, a ROM
containing a JVM and core Java classes, and an Ethernet
interface chip. The MCU is a proprietary 8-bit ASIC core that
runs at 33 MHz—plenty fast, says Dallas Semi, for the rela-
tively simple bitstream processing expected of a Jini inter-
face. It has two asynchronous serial ports, I2C, and a single-
wire interface (1-Wire MicroLAN) for optional coprocessors.
The ROM chip was originally a 256K part, but the company
is moving to a 512K ROM to make room for the Java 2 ver-
sion of RMI. The Ethernet chip includes a TCP/IP stack.
Designers can add their own RAM (up to 1M).

The chip set is scheduled to be commercially available
in June for $50 in single-unit quantities. That would make
Jini a costly addition for small devices, but a more integrated
single-chip version is targeted to sell in mid-2000 for $15.
Dallas Semiconductor is delivering a $500 beta developer’s kit
this month.

Until more cost-effective solutions for embedded Java
appear, fully enabled Jini implementations will probably
appear first in peripherals that already have a fair amount of
processing power and firmware: network laser printers,
server-sized disk drives, and professional scanners. Even
those kinds of devices may rely heavily on proxies until Jini
proves itself in the marketplace.

Microsoft’s Java-Free Alternative
Why bother with eJava or pJava when nJava (no Java) could
work just as well? asks Microsoft. UPnP is similar to Jini but
standardizes on service protocols instead of Java interfaces.

When a UPnP device attaches to a network, it seeks an IP
address from a dynamic host configuration protocol (DHCP)
server or, if necessary, assigns itself one using automatic pri-
vate IP addressing (APIPA). APIPA is a proposed Internet
Engineering Task Force (IETF) standard that allows a client to
randomly pick an IP address from a 16-bit table of entries
while checking for collisions with existing addresses. It’s ideal
© M I C R O D E S I G N R E S O U R C E S M A R C H
for small LANs. APIPA is already built into Windows 98 and
Mac OS 8.

Newly connected UPnP devices, like Jini devices, send
multicast packets over the network in search of a lookup ser-
vice, which Microsoft calls an announcement listener. The
protocol for the multicast packet is another proposed IETF
standard: simple server discovery protocol (SSDP).

On a large network, the announcement listener would
be integrated with a directory service. The listener stores the
attributes of all available services, though not in the form of
program objects as Jini does. Jini’s approach might allow
more flexible queries, because devices can find services by
matching Java object types not just strings and values. For
example, “printer” could be an object type, with subclasses
for various kinds of printers.

On a small network, such as a home LAN, a UPnP
device stops looking for an announcement listener if it
doesn’t receive a response. It then waits for a peer device to
query for a service by multicasting another SSDP packet.

Either way, UPnP devices that have services to offer
respond by returning a URL. The URL contains the respond-
ing device’s IP address and the name of the protocol required
to access the service. In the case of a printer, scanner, or digi-
tal camera, it might specify Internet printing protocol (IPP),
another proposed IETF standard.

UPnP Requires Standardized Protocols
This approach dispenses with Sun’s Java-centric Jini inter-
faces and RMI. But it means the industry must define a pro-
tocol for every class of service, and it also requires every client
that uses a service to natively support the appropriate proto-
col. A single device could support more than one protocol—
for example, a printer might accept IPP and LPR.

UPnP’s reliance on standardized protocols is similar to
the way Web servers communicate with clients using hyper-
text transfer protocol (HTTP). A Web server doesn’t need to
know anything about a client system that requests a Web
page. The server merely sends an HTTP-encoded package of
HTML text and graphics over the network to the client,
which implements whatever code is necessary to render the
content on a screen. HTTP insulates the Web server from
specific knowledge about the client’s CPU architecture, OS,
APIs, screen size, and other native details. UPnP will use sim-
ilar protocols to extend that model to any kind of device or
service, as Figure 3 shows.

In this manner, UPnP, like Jini, tries to isolate the most
bothersome low-level driver code on the device itself by
adding a level of indirection on the network. Microsoft’s
goal is not only to simplify things for users but also to
reduce a burden on its OS developers. Microsoft says that
the testing of an OS against thousands of devices and dri-
vers is a major factor delaying the release of new versions of
Windows.

Microsoft estimates that adding UPnP to a device
might require only about 90K of x86 code, or perhaps
UPnP Hardware Service

UPnP Software Service

(any program)

Service protocol over network

UPnP Client

(any client)

Protocol
Interface

Protocol
Interface

Low-Level
Device Driver

Protocol
Interface

(any device)

Private or Native
Protocol

Figure 3. Microsoft’s Universal Plug and Play relies on standard-
ized service protocols (such as LPR) instead of Java interfaces.
2 9 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

4 S U N ’ S J I N I : S C I E N C E , N O T M A G I C

E
M

B
E
D

D
E
D

65,000 gates on a chip. If a device already supports a TCP/IP
stack, a UPnP implementation might require as little as 5K
of additional code. (Minimally, a UPnP device must sup-
port a TCP/IP stack and the browserlike capability to navi-
gate URLs and use service protocols.) The precise require-
ments are uncertain because UPnP is even newer than Jini.
Microsoft plans to distribute the first specifications at the
Windows Hardware Engineering Conference in April.
Some vendors are testing prototypes of UPnP-enabled
devices.

Both Microsoft and Sun are enlisting allies to their
causes and are trying to seed the market. Microsoft is making
the UPnP specifications available for free, but it may charge
later for SDKs. Jini is available under the new Sun commu-
nity source license. This allows anyone to download and
experiment with Jini source code for free, but Sun charges
fees when developers distribute Jini source code or bytecode
commercially.

The Distributed-Computing Debate
Easier networking isn’t the whole story. Jini and UPnP also
build the foundation of a distributed-computing architec-
ture, which is why Jini is often compared to Microsoft’s
Millennium, a research project that tries to make distributed
computing invisible to programmers. Services brokered by
Jini and UPnP can be provided by hardware or software—
clients don’t care. They’re aware of only the network-level
interfaces, which can present any kind of service.

Vendors such as Xerox want to take advantage of those
capabilities to streamline document processing. For exam-
ple, a Jini-enabled scanner could automatically send the
scanned image of a document to a Jini-aware OCR program
running on a server. After converting the scan to text, the
OCR program could pass the document to another Jini-
aware program that sorts documents and forwards them to
the appropriate users or archives. Xerox says it’s possible to
do all that today on a network of Windows PCs, but Jini
offers a better cross-platform solution.

The abstraction of hardware and software services
means that a Jini client can distribute just about any task to
Jini-aware processes running on multiple computers across a
network. The remote processes could provide services
ranging from file filtering to parallel computation. The same
is true of UPnP. Neither distribution model is transparent,
however. Developers must explicitly write distributed appli-
cations with this architecture in mind.

In that sense, both Jini and UPnP fall short of Millen-
nium. Microsoft has a prototype JVM called Borg that allows
any Java program to distribute its workload across multiple
systems. To the program (and, more important, to the pro-
grammer), those systems appear as a single process. Another
Millennium prototype known as Coign optimizes the per-
formance of distributed Common Object Model (COM)
applications. But Millennium is still a research project with
no announced product plans.
© M I C R O D E S I G N R E S O U R C E S M A R C H
Although Jini doesn’t go quite as far as Millennium, the
Java platform has a way of evolving into whatever Sun needs
it to be. Remember that Java first attracted attention as a cute
way to enliven static Web pages with animated graphics; only
later was it discovered to be a powerful language for writing
server-side enterprise software. Don’t be surprised if Jini
becomes a similar vehicle for Sun’s grander ambitions to
prove that “the network is the computer.”

It’s Hard To Buck Microsoft
The immediate goals of Jini and UPnP are certainly worth-
while. IT departments could no doubt save significant money
and downtime if networks could automatically reconfigure
themselves after the arrival or departure of new users, devices,
and services. Workplaces would be more flexible if networks
could dynamically adapt to the needs of part-time employees,
on-site contractors, temporary work groups, and other tran-
sient demands of modern business. Retailers could sell more
merchandise if home networks were as easy to install as tele-
phones. And, of course, chip makers and developers could
ship a lot more hardware and software to power all of those
products.

Jini and UPnP appear equally capable of making these
goals a reality. Although a device could support both (as well
as other mechanisms, such as JetSend, Service Location Pro-
tocol, and Salutation), this ability would increase costs. Ulti-
mately, Microsoft’s control over the PC platform gives UPnP
an undeniable advantage. UPnP also sits better with those
who can’t abide Java.

But neither technology will change things overnight.
The original Plug and Play took years to make an impact,
even though its scope is limited to the relatively controlled
internal environment of Windows PCs. Indeed, Windows
NT still doesn’t support PnP. USB’s gestation period has been
similarly protracted. All connectivity technologies depend
on the industrywide cooperation of hardware designers,
software developers, and a critical mass of vendors. Jini and
UPnP are only beginning to herd those cats.— M
F o r M o r e I n f o r m a t i o n

For more information about the technologies and
products discussed in this article, check out the following
Web sites:

• Jini, www.sun.com/jini
• Universal Plug and Play, www.microsoft.com/homenet
• Dallas Semiconductor, www.dallassemiconductor.

com/News_Center/Press_Releases/1999/prjini.html
• Oberon’s JBed, www.jbed.com
• Insignia Solutions’ Jeode, www.insignia.com
• Internet Engineering Task Force, www.ietf.org
• Microsoft Millennium project, www.microsoft.com/

presspass/features/1999/02-29mill.htm
2 9 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

http://www.sun.com/jini
http://www.microsoft.com/homenet
http://www.dallassemiconductor.com/News_Center/Press_Releases/1999/prjini.html
http://www.dallassemiconductor.com/News_Center/Press_Releases/1999/prjini.html
http://www.jbed.com
http://www.insignia.com
http://www.ietf.org
http://www.microsoft.com/presspass/features/1999/02-29mill.htm
http://www.microsoft.com/presspass/features/1999/02-29mill.htm

	Sun’s Jini: Science, Not Magic
	Abstracting Device Drivers
	Figure 1. Jini services use RMI to interact over...
	The Incredible Shrinking JVM
	Figure 2. Jini services can be provided by hardware...
	Microsoft’s Java-Free Alternative
	Figure 3. Microsoft’s Universal Plug and Play...
	UPnP Requires Standardized Protocols
	The Distributed-Computing Debate
	It’s Hard To Buck Microsoft

	For More I nfo rmation

