
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

by Tom R. Halfhill and Rich Belgard

From its start in 1997, Lexra has pursued a simple busi-
ness plan: design embedded processor cores that are largely
compatible with the popular MIPS architecture, license the
cores as synthesizable models that are easily portable to dif-
ferent IC processes, undercut the cost of a MIPS license, and
avoid legal entanglements with Mips Technologies. Lexra has
done a good job of executing the first parts of that strategy,
but Mips keeps foiling the last objective.

For the second time in two years, Mips has filed a law-
suit against Lexra (see MPR 11/15/99, p. 16). In 1998, Mips
sued Lexra over trademark issues and product claims. That
led to an out-of-court settlement in which Lexra agreed to
drop the letter “R” from its product names (for example, the
LXR4080 became the LX4080) and to stop promoting its
cores as “MIPS compatible.” After that skirmish, Lexra may
have thought the worst was over. But in October Mips filed a
patent-infringement lawsuit that’s a new threat to Lexra’s
future. The patent lawsuit strikes at the heart of Lexra’s tech-
nology, alleging that the cores violate some key Mips patents.

The lawsuit’s timing seems calculated. Mips and Lexra
have been negotiating terms for a MIPS license for several
months, and Mips filed the complaint after the talks reached
an impasse, so it could be interpreted as a negotiating tactic.
Also, Lexra is proving to be a feisty competitor. Lexra has
signed up 17 licensees, has beaten Mips to the punch with a
synthesizable core by a whole year, and has introduced new
DSP extensions and other innovative features. Nevertheless,
the lawsuit raises important questions about Lexra’s technol-
ogy, the Mips patent portfolio, some unusual features of the
MIPS architecture, and the general feasibility of building
independent CPUs that execute a popular instruction set.

In some ways, the controversy is reminiscent of the
interminable battles that AMD fought with Intel over x86
microcode and other issues. We think the outcome will be
similar. Eventually, an out-of-court settlement will save face
and legal costs for both parties without resolving the larger
questions about technology patents, instruction-set compat-
ibility, and the intellectual property embodied in micro-
processors. Still, it’s worth examining the case in more depth,
if only because the popularity of successful architectures is
bound to attract similar competition in the future.

Unaligned Loads and Stores
The Mips complaint alleges that Lexra is infringing on at
least two and possibly as many as eleven Mips U.S. patents.
The two patents at the center of the complaint are 4,814,976
and 5,864,703. Mips applied for the ’976 patent in 1986, dur-
ing the Bronze Age of microprocessors; it was granted in
1989. Mips applied for the ’703 patent in 1997; it was granted
last January. The ’976 patent describes load and store instruc-
tions that handle data not aligned on word boundaries in
memory. The ’703 patent describes technology for reducing
the loss of precision while performing arithmetic operations
in single-instruction, multiple-data (SIMD) format.

The load/store instructions that Mips claims are cov-
ered by the ’976 patent were also a sticking point in the 1998
lawsuit over trademark issues. There are four relevant in-
structions: LWL (load word left), SWL (store word left), LWR
(load word right), and SWR (store word right).

Figure 1 shows how these instructions work. LWL and
LWR allow a program to load a 32-bit word of data that strad-
dles a 32-bit boundary in memory, shift the unaligned frag-
ments into proper alignment, and merge them in a register.
Likewise, SWL and SWR allow a program to store a 32-bit
word across a memory boundary. These load and store oper-
ations accomplish in two instructions (and only two bus
cycles) what would otherwise require about 20 instructions
and many more cycles.

Mips vs. Lexra: Definitely Not Aligned
Patent Lawsuit Hinges on Unusual Instructions in MIPS Architecture

8 Bits

32-Bit Word Boundaries in Memory

Unaligned Data
(Byte 0)

Unaligned Data
(Byte 1)

Unaligned Data
(Byte 2)

Unaligned Data
(Byte 3)

32-Bit Register

Aligned Data
(Byte 0)

Aligned Data
(Byte 1)

Aligned Data
(Byte 2)

Aligned Data
(Byte 3)

Memory-Address Pointer

Memory-Address Pointer

0 1 2 3

4 5 6 7

8 Bits 8 Bits 8 Bits

M
em

ory
R

egister

Unaligned Data
(Byte 0)

Unaligned Data
(Byte 1)0 1 2 3

Unaligned Data
(Byte 0)

Unaligned Data
(Byte 1)0 1 2 3

Unaligned Data
(Byte 2)

Unaligned Data
(Byte 3)4 5 6 7

M
em

ory

LW
L

2,
 r

eg
LW

R
 5

, r
eg

SW
R

 re
g,

 2
SW

L
re

g,
 5

Figure 1. This example shows how the LWL and LWR instructions
load two fragments of unaligned data from memory, shift them
into word alignment, and merge them in a register. The SWR and
SWL instructions reverse the process, storing the data to memory
across a word boundary. For this example, memory addressing is
big-endian, as are all of Lexra’s cores.

E
M

B
E
D

D
E
D

2 M I P S V S . L E X R A : D E F I N I T E L Y N O T A L I G N E D

© M I C R O D E S I G N R E S O U R C E S D E C E M B E R 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

Lexra’s documentation states that its cores don’t sup-
port unaligned loads and stores in hardware. (Indeed, this
was another condition for settling the 1998 lawsuit.) The
LX4080 data sheet states: “...the LX4080 executes MIPS-I
instructions with the following exclusions: the unaligned
loads and stores (LWL, SWL, LWR, SWR) are not supported
because they add significant silicon area for little benefit in
most applications. Occasional unaligned data handling is
more cost-effectively handled without these specialized ops.”

Although this makes it clear that the LX4080 doesn’t
support unaligned loads and stores in hardware, it’s likely
that the reason is more legal than technical. The instructions
would have a greater impact on critical speed paths than on
silicon area, because they must perform a load or store, a
shift, and a merge in a single cycle. But what’s even more
likely than either technical explanation is that Lexra was
aware of the 1989 patent when designing its cores and sought
to avoid a confrontation with Mips.

Instead of supporting unaligned load/store instruc-
tions in hardware, Lexra provides licensees with a special
trap handler and a C library to perform equivalent opera-
tions in software. The unsupported instructions trigger a
reserved-instruction trap that executes a routine of alternate
instructions, as Figure 2 shows. Although Lexra supplies the
code in C for easier maintenance, the figure shows the assem-
bly output of a GNU compiler for illustrative purposes.

The Compatibility Controversy
How common are unaligned load/store operations? It de-
pends greatly on the application. Programs that mix data
types of different lengths, or that compress data by omitting
unneeded bits, might be riddled with 32-bit words that
straddle 32-bit boundaries. That kind of code, especially if it
occurs in a critical inner loop, could impair the performance
of a Lexra core, because the routines shown in Figure 2 are
only a small part of the total code executed during a reserved-
instruction trap. The operating system’s exception handler
adds hundreds of instructions to the detour.

To avoid that penalty, a compiler can align data on
word boundaries by padding unaligned words with zeroes.
Of course, this inflates the size of the data, which can be sig-
nificant for some memory-starved embedded applications.

Lexra says unaligned loads and stores are rare in MIPS
embedded software, and authoritative sources tend to agree.
A discussion of the MIPS architecture in John L. Hennessy
and David A. Patterson’s Computer Architecture: A Quantita-
tive Approach states: “A rare event in most programs, [the
instructions are] included for COBOL programs where the
programmer can force misalignment by declarations.”

Not many embedded programmers are using COBOL
these days. William Dally, a professor of electrical engineer-
ing and computer science at Stanford University, says un-
aligned data is rare in embedded programs for RISC and
modern CISC architectures: “You always align the data for
performance reasons, if nothing else.”

There are some cases in which software tuned for the
MIPS architecture uses unaligned loads and stores. One
example is a special BSD version of the C library function
memcpy, which makes liberal use of the instructions. The
source code for this function is listed in Dominic Sweetman’s
See MIPS Run, a detailed textbook on the MIPS architecture.

In any case, the need for a special trap handler and
emulation routine does mean that Lexra’s cores are not 100%
MIPS compatible. That’s why Lexra agreed to stop referring
to its cores as “MIPS compatible” when settling the 1998 law-
suit. When we applied that term to Lexra’s new LX4280 in a
recent article (see MPR 8/2/99, p. 13), we received a polite
but firm letter expressing the concern of the Mips legal
department. The letter said our description was inaccurate
“because (at least) the LX4280 does not support MIPS
unaligned load and store instructions in hardware.”

Point well taken. But it’s difficult to reconcile that point
with Mips’s patent-infringement lawsuit, which appears to
argue that Lexra supports unaligned loads and stores to a
degree that violates the ’976 patent. Are Lexra’s cores MIPS
compatible after all? Mips says no, but won’t elaborate. Evi-
dently, Mips believes that achieving the same result in soft-
ware isn’t sufficient to make Lexra’s cores MIPS compatible,
but is sufficient to infringe on the patent.

The ’976 patent contains 14 claims. Claims 1–3 are
independent apparatus claims: claim 1 covers loading hard-
ware; claim 2 covers storing hardware; and claim 3 covers
loading and storing hardware. These claims use “means plus
function” language, so Lexra’s implementations would likely
have to be very similar to the patented implementations—
which describe hardware.

Claims 9 and 12 appear more applicable to software
because they are independent method claims. Claim 9 appears

E
M

B
E
D

D
E
D

/* LWL */
SUBU $v0,$a0,$a2
LW $a1,0($v0)
LI $v0,-1
SLLV $v0,$v0,$v1
NOR $v0,$zero,$v0
AND $v0,$a3,$v0
SLLV $a1,$a1,$v1
OR $a3,$v0,$a1
JR $ra
SW $a3,0($t0)

/* LWR */
SUBU $v0,$a0,$a2
LI $v1,3
SUBU $v1,$v1,$a2
SLL $v1,$v1,0x3
LW $a1,0($v0)
LI $v0,-1
SRLV $v0,$v0,$v1
NOR $v0,$zero,$v0
AND $v0,$a3,$v0
J bfc118a4
SRLV $a1,$a1,$v1

/* SWL */
SUBU $a0,$a0,$a2
SLL $v1,$a2,0x3
LI $v0,-1
SRLV $v0,$v0,$v1
NOR $v0,$zero,$v0
LW $a1,0($a0)
J bfc1191c
SRLV $v1,$a3,$v1

/* SWR */
LI $v1,3
SUBU $v1,$v1,$a2
SLL $v1,$v1,0x3
LI $v0,-1
SLLV $v0,$v0,$v1
NOR $v0,$zero,$v0
LW $a1,0($a0)
SLLV $v1,$a3,$v1
AND $a1,$a1,$v0
OR $a3,$v1,$a1
JR $ra
SW $a3,0($a0)

Emulating an Unaligned Load Emulating an Unaligned Store

Figure 2. This emulation code executes when a Lexra core traps
the unaligned load/store instructions (LWL, LWR, SWL, SWR).

© M I C R O D E S I G N R E S O U R C E S D E C E M B E R 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 M I P S V S . L E X R A : D E F I N I T E L Y N O T A L I G N E D

to cover any series of operations that loads an unaligned piece
of data from memory, shifts the data to a word boundary, and
merges it with another piece of data so they’re properly
aligned. Claim 12 appears to cover the corresponding store sit-
uations. If a court rules that these claims apply to Lexra’s soft-
ware emulation, Lexra may have a problem.

It all depends on how broadly a court interprets the
claims. Microprocessors were loading and storing unaligned
data long before Mips applied for the ’976 patent in 1986.
Early programmers paid little attention to word boundaries,
because memory conservation was more important and
CISC instruction sets didn’t encourage rigid data alignment.
As Sweetman points out in See MIPS Run, “Because CISC
architectures such as the MC680x0 and Intel x86 do handle
unaligned loads and stores, you may come across this as a
problem when porting software.”

Dally, the Stanford professor, recalls working with a
68000 exception handler in the early 1980s that performed
unaligned loads and stores almost exactly the way Lexra
does. Later 68K (and all x86) processors handle unaligned
loads and stores in hardware, often with microcode.

The 68K and x86 architectures preceded the MIPS
architecture (and Mips’s filing of the ’976 patent) by at least
seven years. For Mips to prevail on this count, a court will
have to interpret the patent broadly enough to include
Lexra’s method for loading and storing unaligned data but
narrowly enough to exclude the methods used by other
architectures that have existed since the 1970s.

Extended-Precision SIMD Instructions
Another count in the Mips complaint refers to the ’703
patent, which covers SIMD operations with intermediate
extended precision. This patent describes the MDMX (MIPS

digital-media extensions, also known as Mad Max) technol-
ogy that Mips announced in 1996 (see MPR 11/18/96, p. 24).

MDMX is similar to Intel’s MMX—it adds new multi-
media instructions and defines new registers that are mapped
onto the existing floating-point registers. Both architectural
extensions allow SIMD instructions to operate on multiple
8- or 16-bit integers packed into a 64-bit register. Unlike
MMX, however, MDMX holds intermediate results in an
extended-precision format to prevent lost precision due to
overflows and underflows.

To hold those intermediate results, MDMX defines a
192-bit accumulator, which can hold eight 24-bit values or
four 48-bit values. When an instruction finishes its arith-
metic operations, it converts the extended-precision inter-
mediate result back to the original degree of precision by
scaling, rounding, or clamping, which the ’703 patent jointly
refers to as “transforming.”

All of the patent’s claims are method claims, not appa-
ratus claims, so they don’t cover the hardware that executes
MDMX instructions. Instead, they cover using the hardware
to execute the instructions.

Ironically, in the three years since Mips announced
MDMX, neither Mips nor any of its licensees has introduced
a processor that uses the technology. NEC’s MIPS-compatible
VR5400 comes the closest by implementing similar multi-
media extensions (see MPR 3/9/98, p. 1), but they aren’t tech-
nically or legally the same as MDMX, and they were jointly
designed with SandCraft, which at the time wasn’t a Mips
licensee. (SandCraft finally joined the fold on October 28, the
same day Mips sued Lexra.)

The ’703 patent still stands, of course, whether or not
Mips ever implements MDMX. But this is another way Lexra
may have annoyed Mips. Although Lexra doesn’t support
MDMX, Lexra has announced a core that will have SIMD
extensions, and Lexra is licensing the extensions to Mips
licensees at no charge. Furthermore, the new core and exten-
sions will probably reach the market before MDMX does.

That core is the LX5280 (see MPR 5/10/99, p. 5) with
the so-called Radiax extensions. Radiax consists of 36 new
DSP-type instructions that seem to be the focus of the Mips
complaint. Curiously, the Mips lawsuit accuses two Lexra
cores of violating the ’703 patent, but only the LX5280 sup-
ports Radiax. The other core Mips identifies is the LX4280
(see MPR 8/2/99, p. 13). Although the LX4280 does have a
multiply-accumulate (MAC) instruction, it lacks the more
complete Radiax operations found in the LX5280.

Comparing Radiax With MDMX
Radiax differs in some important ways from MDMX. It’s
designed primarily for real-time DSP applications, not
multimedia. For that reason, it supports fractional arith-
metic, modulo addressing, post-modified pointers, and
other DSP-type operations.

But there are similarities between Radiax and MDMX
too. Both have instructions that perform the essential

X Y

32 32

32 32

32

40 40

40 40

16,32 16,32

Multiplier 1
(16 × 16 bit)

Product 1 (32) Product 0 (32)

Acc m0H (40)

Scaler >>[0–8]

Accumulator 1

Temp 1 (32)

Multiplier 0
(16 × 16 bit)
Temp 0 (32)

Accumulator 0

Acc m1H (40)
Acc m2H (40)
Acc m3H (40)

Acc m0L (40)
Acc m1L (40)
Acc m2L (40)
Acc m3L (40)

Add, Sub,
Dual Round
(w/saturate)

40 40

Divider

Scaler >>[0–8]

Figure 3. The LX5280’s dual MAC units support SIMD instructions
and use 40-bit-wide accumulators for intermediate results.

E
M

B
E
D

D
E
D

4 M I P S V S . L E X R A : D E F I N I T E L Y N O T A L I G N E D

© M I C R O D E S I G N R E S O U R C E S D E C E M B E R 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

operations claimed by Mips in the ’703 patent: SIMD arith-
metic, intermediate extended precision, and transformation
to the original precision (see MPR 8/23/99, p. 19).

For example, the LX5280’s MADDA2[.S] is a MAC-type
SIMD instruction that performs dual 16 × 16-bit multiplies,
stores the results in a pair of 40-bit accumulators that have
eight guard bits for overflow protection, and adds the prod-
ucts to the contents of two more 40-bit accumulators. In a sep-
arate operation, scalers transform the 40-bit results back into
16-bit values. Figure 3 shows the dual multipliers, accumula-
tors, and scalers that carry out these operations in parallel.

Even in this example, there are differences. One poten-
tially important difference is that a single MDMX instruction
can carry out all those operations, while the LX5280 requires
multiple instructions to do the same thing, and some of the
operations are optional. Saturation is optional, depending on
whether the programmer appends the .S suffix to MADDA2.
An optional mode bit specifies whether MADDA2.S performs
saturation on 40 or 32 bits. Rounding the 40-bit intermediate
result down to 16 bits requires a separate instruction
(RNDA2). Another instruction (MFA2) moves the dual 16-bit
results from the accumulators to general-purpose registers,
with an optional right shift.

If the ’703 patent applies only when a single instruction
performs all those operations, Lexra may be off the hook.
But it’s not clear to us whether the patent applies only to sin-
gle instructions or to multiple instructions.

If ’703 covers multiple instructions, Lexra could ask the
court to invalidate the patent because of the existence of
prior art. To do this, Lexra could show that somebody else
disclosed similar instructions at least one year before Mips
filed the ’703 patent on October 9, 1997.

Almost all fixed-point DSPs use extended precision in
the form of guard bits to protect intermediate results against
overflows and underflows, and some also have SIMD in-
structions. Some other kinds of processors also perform
these operations. One early example we found is Motorola’s
88110, introduced in 1991 (see MPR 12/4/91, p. 1).

The 88110 has SIMD instructions for manipulating
pixel values. The PUNPK instruction can unpack four 8-bit
pixels into an equal number of 16-bit values by padding them
with zeroes—in effect, adding 8 guard bits per pixel to protect
against overflows. Various arithmetic instructions, such as
PMUL (pixel multiply), can manipulate those values in paral-
lel, returning 16-bit results. Finally, the PPACK instruction can
repack the 16-bit values as 8-bit pixels by truncating the least-
significant bits, effectively restoring their original precision.

Whether this example or any other is sufficient evi-
dence of prior art is, of course, a matter for the court to
decide. Technology patents are often subject to widely differ-
ent interpretations.

Seeds for Future Lawsuits
An unusual feature of the Mips lawsuit is that it lists nine
additional patents Mips believes Lexra may have infringed,

pending “further investigation and discovery.” We’ve never
seen a patent complaint that leaves the door open to further
counts based on information that may be uncovered during
the discovery process.

Mips doesn’t provide any further explanation, so we’ll
summarize the additional nine patents. U.S. 4,959,779
(issued 1990), 5,398,328 (1995), 5,408,664 (1995), 5,524,245
(1996), and 5,572,713 (1996) all describe ways of coping
with different byte orderings. Lexra’s cores are big-endian,
not little-endian or bi-endian, so it’s not clear how these
patents apply to Lexra.

U.S. 4,805,098 (1989) describes a buffer that gathers
sequential write requests to the same memory address and
combines them into a single write request. This speeds up
processing, because the CPU doesn’t waste time repeatedly
storing data at the same address. Lexra says its cores don’t
have this feature—they always execute all write requests,
even if it means redundantly storing data at the same
address.

U.S. 5,027,270 (1991) describes a technique for begin-
ning to process the instructions in a cache block while con-
tinuing to fill the block with instructions from main mem-
ory. This is another feature that Lexra says its cores don’t
implement—the CPU must stall until a cache line is com-
pletely filled before processing the instructions in that line.

U.S. 4,953,073 (1990) describes a CPU cache in which
the address-generating unit and the tag comparator are
“packaged together and separately” from a primary cache.
The patent appears to describe a CPU with an off-chip pri-
mary cache. But all of Lexra’s cores have on-chip primary
caches, so it’s not clear how the patent applies in this case.

U.S. 5,590,294 (1996) describes both a method and an
apparatus for restarting a pipeline after servicing one or
more interlock processing faults. Lexra says its cores stall for
one cycle instead of taking such a fault.

Burying the Hatchet
Building a solid patent portfolio is the best defense against
costly lawsuits of this type. It’s like the Cold War concept of
MAD (mutually assured destruction): nobody will attempt
to destroy you if you have enough weapons of your own to
strike back.

Unfortunately for Lexra, Mips has most of the missiles.
Although Lexra has some patent applications pending, it

F o r M o r e I n f o r m a t i o n

Mips Technologies’ lawsuit, Lexra’s counterclaim, and
other documentation are available on the companies’
Web sites: www.mips.com and www.lexra.com. To read
the patents, go to IBM’s Intellectual Property Network at
www.patents.ibm.com/patquery and enter the patent
numbers, omitting the commas.

E
M

B
E
D

D
E
D

© M I C R O D E S I G N R E S O U R C E S D E C E M B E R 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

5 M I P S V S . L E X R A : D E F I N I T E L Y N O T A L I G N E D

currently has no portfolio. Mips also has more financial and
legal resources than Lexra.

Lexra isn’t defenseless, however. It has more licensees
for its cores—17 companies that chose Lexra over Mips. And
Lexra has a longer track record of licensing portable cores—
Mips didn’t announce its first soft cores until six months ago
(see MPR 5/31/99, p. 18), a year after Lexra’s LX4080 was
already in silicon. Neither factor would matter in court, but
both should matter to Mips. If Lexra and Mips eventually
settle their differences out of court, Lexra’s licensees could
become Mips licensees by proxy, and it’s not good business to
alienate potential customers. Both companies need to focus
on competing against Arm, which is the real competition for
the MIPS architecture in the market for licensed cores. In the
long run, a Mips-Lexra alliance would strengthen the MIPS
architecture.

In addition to the considerable legal costs of pursuing
the case, both companies risk other losses. A protracted legal
battle could irreparably harm Lexra’s growing business, even
though Lexra indemnifies licensees against lawsuits of this
type. If the case makes it to trial, Mips risks having a court
invalidate some of its patents, even if Mips wins. Some of the
patents Mips is asserting appear very broad and subject to
different interpretations. It might be wiser to leave them
unchallenged than to press them in court and remove all
doubt.

We expect Mips and Lexra to reach a settlement that
results in Lexra’s holding a MIPS license. If so, Lexra will
finally obtain the privilege of calling its cores “MIPS compat-
ible.” This would also save Mips’s lawyers the trouble of send-
ing letters of admonishment to errant writers who use that
term. Then everyone will live happily ever after.—M

E
M

B
E
D

D
E
D

