
©  M I C R O D E S I G N  R E S O U R C E S A U G U S T  7 , 2 0 0 0 M I C R O P R O C E S S O R  R E P O R T

their software in Java—even device drivers and other low-
level code that normally would be written in C or assembly
language.

AJile’s aJ-100 microprocessor is based on the 32-bit
JEM2 Java chip developed by Rockwell-Collins. JEM2 is an
enhanced version of JEM1, created in 1997 by the Rockwell-
Collins Advanced Architecture Microprocessor group (see
MPR 10/27/97-en, “Rockwell Unearths Java JEM”). Rock-
well-Collins originally developed JEM for avionics applica-
tions by adapting an existing design for a stack-based embed-
ded processor.

Sun’s Java virtual machine (JVM) uses a stack-based
architecture, and the JEM cores have a writable microcode
store, so the Java adaptation was fairly straightforward. The
Rockwell-Collins team widened the core’s datapaths to 32
bits, added some new datapaths to support Java data types,
modified the instruction-fetch unit, and wrote a new micro-
code library that executes Java bytecodes. (Bytecodes are exe-
cutable Java instructions created by a Java compiler or assem-
bler. They are comparable to the machine instructions created
by other compilers and assemblers.) By executing bytecodes
natively, Java processors don’t need a bytecode interpreter or
a memory-hogging just-in-time (JIT) compiler.

Although Rockwell-Collins is using JEM2 for internal
research and development, the company decided not to sell
the chip on the merchant market. Instead, it exclusively
licensed the design to aJile, which was founded last year by
engineers from Rockwell-Collins, Centaur Technologies, Sun

Microsystems, and IDT. AJile has wrapped additional on-
chip memory and peripherals around the JEM2 core to cre-
ate a more-integrated chip for low-power (<100mW) and
real-time (<1 microsecond) embedded applications.

AJile’s goal is to penetrate embedded markets that
until now have been off limits to Java because of high cost,
low performance, and excessive power consumption. By
programming in Java, developers can write more-portable
code while leveraging Java’s productivity advantages over
C/C++ and assembly language.

A Compact CISC Core
Development boards based on a JEM2 chip with an FPGA
are available now, and samples of the aJ-100 are scheduled
to be available this fall. Production is expected to begin by
the end of the year. Fabricated in a 0.25-micron CMOS
process, the fully static core runs at 100MHz at 2.5V (with
5V-tolerant I/O), consumes less than 1mW per MHz, and
occupies less than 1mm2 of die area. With integrated
peripherals and 48K of on-chip SRAM, the total die area is
less than 16mm2. The chip is packaged in a 176-pin LQFP
and will cost $15 in 10,000-unit quantities.

As Figure 1 shows, the aJ-100 core is a relatively simple
32-bit CISC machine with a single ALU, 24 general-purpose
registers, 16K of microcode ROM, 16K of microcode SRAM,
and some on-chip stack control and power management.
The memory bus is 32 bits wide internally and runs at the
processor’s core speed. To reduce the pin count, the current
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version of the aJ-100 brings out only 28 address lines. That
still permits the aJ-100 to address 32MB of physical memory,
hardly a limitation for its intended applications.

The ROM control store contains the microcode that exe-
cutes Java bytecode instructions and IEEE-754 floating-point
routines. No Java processor announced to date natively exe-
cutes the entire set of 226 bytecode instructions, and the aJ-
100 is no exception. The reason is that some of the most com-
plex instructions take an indeterminately long time to execute
and are relatively rare in Java programs. Java processors trap
those bytecodes at run time and execute them in software.

Compared with other Java chips, the aJ-100 executes a
larger percentage of bytecode instructions (99%) without
resorting to software traps. In fact, the aJ-100 natively executes
all but two bytecode instructions: MULTIANEWARRAY (allocate
a new multidimensional array) and ATHROW (throw an ex-
ception or error). In comparison, Sun’s picoJava core executes
about 170 bytecode instructions in hard-wired logic, imple-
ments about 30 in microcode, and traps the remaining in-
structions in software.

To handle ATHROW and MULTIANEWARRAY, the aJ-100
has a low-level process running in executive or supervisor
mode on its own stack. (Note that this mode is not part of the
standard JVM specification.) On a trap, the processor switches

to executive mode and begins executing a trap handler. This
handler, like all other software running on the aJ-100, is writ-
ten in Java and may call other Java methods. To execute MUL-
TIANEWARRAY, for example, the trap handler repeatedly calls
the code that allocates memory for single-dimensional arrays,
since multidimensional arrays in Java are simply multiple
instances of single-dimensional arrays. When this work is fin-
ished, the trap handler returns control to the original user-
mode process. In the case of MULTIANEWARRAY, the trap han-
dler leaves a return argument on the user-mode stack—an
object pointer to the new array. Normal execution resumes
with the instruction in the user-mode process that follows the
instruction that triggered the trap.

In addition to the 16K ROM control store, the aJ-100
has another control store with 16K of SRAM. This allows aJile
to add new microcode for extended bytecode instructions.
For example, aJile could define an instruction that performs
a square-root function within a critical loop. Application pro-
grammers wouldn’t have to directly manipulate, or even
know about, this instruction, because aJile provides a special
linker called JEM Builder that maps the instruction to a Java
method. (Methods are the object-oriented counterparts to
functions, procedures, and subroutines in other program-
ming languages.) In this example, JEM Builder would redi-

rect the square-root method in Java’s Math class (java.
lang.Math.sqrt) to call the custom square-root instruc-
tion instead of invoking the usual math routine. A
reserved opcode in the bytecode instruction set,
IMPDEP2, traps the method invocation at run time and
redirects the call.

By defining extended bytecodes, aJile can cus-
tomize the aJ-100 for specific customers and applica-
tions. AJile will probably offer this option as an addi-
tional service instead of training customers to use a
microassembler themselves. In this and other res-
pects, aJile doesn’t try to match the level of config-
urability offered by core vendors such as ARC Cores
and Tensilica. But customization via extended byte-
codes is a valuable feature, and it’s similar to the ca-
pabilities of a pair of Java chips from Imsys in Swe-
den: the GP1000 and the Cjip (see MPR 12/28/98-03,
“GP1000 Processor Has Rewritable Microcode”).
Like the aJ-100, the GP1000 and the Cjip implement
most Java bytecode instructions in microcode that’s
partitioned into ROM and SRAM control stores. This
allows Imsys to create custom instructions at the mi-
crocode level. Unlike the aJ-100, the GP1000 and the
Cjip are not exclusively Java chips; alternate micro-
code libraries implement proprietary instruction sets
for software development in C, C++, Forth, and as-
sembly language.

Tossing Out the RTOS
Besides providing a way to add extended bytecodes,
the SRAM control store in the aJ-100 contains a
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Figure 1. The aJ-100 is an integrated processor based on the JEM2 core origi-
nally designed by Rockwell-Collins. The core is a fairly simple 32-bit stack-based
CISC processor with a writable microcode store.
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microcoded real-time kernel and some control code for
running multiple JVMs as separate processes. These unusual
features are substitutes for a conventional RTOS, which on any
other processor would manage the real-time interrupt pro-
cessing and multitasking. Figure 2 shows the elements (shaded
in purple) rendered unnecessary by the aJ-100’s microcoded
bytecode execution and real-time kernel.

The JEM Builder linker allows programmers to assign
any Java method to an interrupt in a 32-entry vector table.
When an event triggers an interrupt, the aJ-100 suspends
the currently running thread, saves the thread’s state, and
switches to the thread that contains the linked method in
the interrupt vector table. The context switch takes no
more than 500ns at 100MHz. (AJile expects the response
time will drop to 300ns in future versions of the aJ-100.)
When the processor is done handling the interrupt, it
switches back to the highest-priority thread that’s ready to
resume execution.

The primary secrets behind the aJ-100’s real-time pro-
cessing are its ability to run multiple JVMs and its real-time
kernel that natively supports Java multithreading. In the
past, the real-time response of embedded software written
in Java was too slow and unpredictable, because a central
feature of the language is automatic garbage collection.

Unlike C/C++, Java doesn’t require programmers to
explicitly allocate and deallocate memory for data structures.
Instead, the JVM automatically allocates memory for new
objects and automatically frees the memory when the pro-
gram no longer references the object. (Java is a thoroughly
object-oriented language; except for a few primitive variable
types, all data structures are objects.) But the garbage collec-
tor that automatically frees memory is relatively slow and
nondeterministic. It plays havoc with programs that require
fast context switching to handle interrupts in real time.

By running multiple JVMs as separate processes, the
aJ-100 allows software developers to assign different tasks to
different JVMs. Moreover, different JVMs can observe dif-
ferent rules for memory management. The JVM dedicated
to real-time processing can disable automatic garbage col-
lection altogether, while other tasks that don’t require real-
time response can run on another JVM that has a normal
garbage collector.

Partitioning an application across multiple JVMs is also
a safety feature. Each JVM is a separate process that runs
inside its own region of protected memory, and each JVM has
its own threads, interrupts, timers, and time slices (in pro-
grammable increments that default to 10 microseconds). If
one JVM crashes, it shouldn’t take down the whole system. To
keep a crashed or misbehaving JVM from interfering with
other processes, the aJ-100 uses watchdog timers to ensure
that each JVM gets the time slice due it.

Multiple JVMs normally don’t share memory on the
heap, since this would compromise system stability and se-
curity. However, developers can set up the JVMs with over-
lapping regions of memory to share data or code. For the

convenience of programmers, JEM Builder provides an ab-
stract interface to the common memory (GlobalMemoryDe-
scriptor), so different JVMs can share global objects. For
maximum security, though, it’s safer for the JVMs to com-
municate via standard socket interfaces.

Memory Achieves Immortality
To make everything work, aJile had to define some extended
bytecodes (such as IPEEK and IPOKE) that directly manipu-
late memory. AJile also had to implement Java’s threading
primitives (such as java.lang.Thread.yield) in microcode. But
as is the case with the custom instructions described above,
the extended bytecodes and real-time kernel are invisible to
Java programmers. AJile’s linker maps those functions to
Java classes and methods.

Extending the bytecode instruction set and disabling
the garbage collector might sound like renegade behavior.
Other companies are taking a similar approach, however. A
loose alliance is developing an official real-time Java specifi-
cation that should be finished later this year (see www.rtg.org).
Participating companies include aJile, Ada Core Technolo-
gies, IBM, Sun Microsystems, Microware, QNX, and Nortel.
AJile’s CTO and cofounder, David Hardin, is a coauthor of
the specification.

The official real-time Java specification will work with
any CPU, not just Java chips. It stops short of the explicit me-
mory management required by C/C++, but it allows pro-
grammers to choose from three types of memory when cre-
ating a new object: normal (for regular nondeterministic
garbage collection); immortal (allocated memory that is never
deallocated); and scoped (when an object falls out of scope,
the garbage collector reclaims the memory immediately, in-
stead of whenever it feels like doing so). Because the official
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Figure 2. Normally, a Java run-time environment requires an inter-
preter to translate Java bytecodes into the CPU’s native machine code.
The aJ-100 eliminates that layer and the other elements shown here
in purple by virtue of its bytecode-native instruction set and microc-
oded real-time kernel.
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real-time Java specification seems destined to become an in-
dustry standard, aJile plans to implement it when it’s final.

Even now, aJile’s approach to real-time processing allows
programmers to write device drivers and other low-level sys-
tem software in Java instead of C or assembly language. Devel-
opers can use the same high-level, object-oriented program-
ming model for a whole embedded application, top to
bottom. For instance, aJile has a device-driver class called Eth-
ernetController with simple methods for sending and receiv-
ing packets.

Extending Java’s object model to low-level program-
ming also allows developers to use standard Java tools, such
as Symantec Visual Cafe, Inprise JBuilder, or IBM Visual-
Age. AJile’s linker strips unused classes out of a project to
save memory and builds an optimized application that can
run from ROM. The linker’s ability to work with standard
development tools saves aJile the trouble of creating propri-
etary tools and gives customers the option of using any tools
they like.

Integration Aids Embedded Design
By adding some on-chip memory and peripherals to the
JEM2 core, aJile has created a well-integrated solution. As Fig-
ure 3 shows, the aJ-100 has 32K of SRAM on chip for storing
data. (This is in addition to the 16K of SRAM and 16K of
ROM for the microcode control stores described above.)

AJile has also adapted the Advanced Microcontroller
Bus Architecture (AMBA) to the aJ-100. As seen in Figure 3,
a 16-bit AMBA bus separates lower-speed peripherals from
higher-speed devices on the 32-bit processor bus. The
slower peripherals include the interrupt controller, three 16-
bit timer/counters, 40 one-bit general-purpose I/O (GPIO)
ports, two 16550-compatible UARTs (which support the IrDA

physical-layer protocol), and a serial peripheral interface
(SPI). The aJ-100 has eight general-purpose chip selects
with programmable wait states and address setup and hold.

Hanging off the 32-bit processor bus is a memory con-
troller for external SRAM, ROM, flash ROM, and peripher-
als. It supports bus widths of 8, 16, and 32 bits. However,
this controller doesn’t support DRAM, so an external mem-
ory controller is necessary for some designs.

Since March, aJile has been shipping an evaluation
board called the aJ-PC104. It has a JEM2 processor, an
FPGA to implement the additional aJ-100 functions, 1M of
flash memory, 1M of SRAM, and a 10Base-T Ethernet port.
It also includes JEM Builder (aJile’s optimizing linker), a
Charade system debugger with JTAG, and a JVM based on
Sun’s Java 1.1.8 platform. This fall, aJile plans to upgrade the
JVM to comply with Sun’s Java 2 Micro Edition (J2ME).
The JVM is valuable because it means developers don’t have
to license anything from Sun. The aJ-PC104 development
system costs $599 and allows developers to start working on
projects before samples of the aJ-100 arrive next quarter.

Crossing the Design-Win Desert
The aJ-100 is a clever product, but its prospects are anything
but assured. Since Sun announced the first Java chips in
1996, embedded developers haven’t exactly been beating
down the doors. Several companies initially signed up as Sun
licensees, then retreated from their plans to sell Java chips
based on Sun’s troubled picoJava core. Other companies,
such as Imsys, created independent designs and hedged their
bets by not making the processors too Java-centric.

Meanwhile, Java has achieved success as a virtual plat-
form for applets on Web pages and business applications on
servers. It’s catching on much more slowly in the embedded
market because the garbage collector interferes with real-
time processing and the run-time environment needs too
much memory. To get decent performance, a JIT compiler
is almost mandatory, but that devours even more memory
(about 500K plus enough RAM to cache the recompiled
code) and makes response times even more nondetermin-
istic (due to the JIT compiler’s caching behavior).

Still, the embedded market for Java is not as barren as
some critics imply. The Imsys GP1000 and Patriot Scientific
PSC1000 have scored a few design wins (see MPR 4/24/00-
04, “Patriot Scientific Allies With ProSyst”), Sony is using
Java in some digital-video cameras (albeit for the user inter-
face, not for control functions), and more than 20 million
Java-based smart cards shipped last year. Java is expected to
play a key role in third-generation (3G) wireless phones,
and vendors like Motorola are working on integrated chips
for 3G handsets that make Java performance a high priority.
Embedded developers are not averse to using Java if they
can overcome the obstacles.

But there’s a difference between using Java and using a
Java chip. If an embedded system can stand enough memory
for a JIT compiler, a conventional embedded processor is a
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Figure 3. The aJ-100 surrounds the processor core with several on-chip
peripherals on two internal buses, including a 16-bit AMBA bus.
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workable alternative. As Figure 4 shows, aJile’s tests indicate
that the aJ-100 is nearly five times faster than a StrongARM
SA-110—if the SA-110 is limited to using an interpreter and
to running at the same 100MHz frequency as the aJ-100.
With a JIT compiler, the SA-110 would be about two times
faster than the aJ-100 at comparable clock speeds (though it
would also consume three times as much power). After fac-
toring in the SA-110’s higher maximum clock frequency
(233MHz vs. 100MHz), we find that StrongARM packs an
even stiffer punch.

If memory is tight and real-time response vital—a typi-
cal scenario for embedded systems—the aJ-100 looks a lot
better. It doesn’t need an interpreter, JIT compiler, or third-
party RTOS, and the JVM is smaller because the multithread-
ing primitives are in microcode. Less memory also means
lower power consumption. And no ordinary microprocessor
and JVM can yet match the aJ-100’s 500ns thread switching.

To get there, however, aJile had to create a special JVM
unique to the aJ-100. Real-time Java code written for the aJ-
100 is 100% Java but isn’t yet “write once, run anywhere,”

because other JVMs and processors don’t have the same fea-
tures. Thus, aJ-100 developers may get the productivity
advantages of writing in Java but not the effortless cross-
platform compatibility that Sun promises.

When the official real-time Java specification is final—
and when aJile adopts it—Java code written for the aJ-100
should be portable to other platforms, whether or not those
platforms are Java chips. As other processor vendors adopt
the real-time Java specification, the aJ-100 will have to com-
pete on its merits as an embedded processor, not just as a
Java processor with fast interrupt handling.

More competition will come from JSTAR, a bytecode-
translation coprocessor that anybody can license and integrate
with a CPU core (see MPR 3/27/00-04, “JSTAR Coprocessor
Accelerates Java”). JSTAR, like the aJ-100, boosts Java perform-
ance while eliminating the need for a JIT compiler. JSTAR has
the added advantage of compatibility with multiple CPU ar-
chitectures, so developers can preserve their investment in
native code while writing new code in Java. And JSTAR’s per-
formance scales with the frequency of the host processor:
mating it with a fast RISC core could produce a chip that eas-
ily outraces the aJ-100. According to JEDI’s CaffeineMark
tests, however, the combination of JSTAR and a Lexra LX4180
would yield about 33% less relative performance (Caffeine-
Marks per MHz) than an aJ-100. Also, JSTAR requires the de-
velopment of an ASIC, so it’s not an off-the-shelf solution like
the aJ-100. Implementing JSTAR in an FPGA would provide
a quicker path to market but would cost more.

Obviously, the aJ-100 is a niche product. That niche
could expand as more embedded developers adopt Java.
But it could also shrink if clock frequencies climb and
memory costs fall to the point where Java interpreters and
JIT compilers become minor obstacles for embedded sys-
tems. We think Java chips still must prove their worthiness;
the aJ-100 adds fuel to the debate, but it doesn’t settle the
argument.
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Figure 4. Native bytecode execution gives the aJ-100 a clear perform-
ance advantage over other types of microprocessors. Note, however,
that the performance comparisons in this chart are relative, not
absolute (CaffeineMarks per MHz), and that the other microprocessors
were running the tests with an interpreter, not a much faster JIT com-
piler. The other processors would outperform the aJ-100 by sheer weight of
clock speed, but they would also consume much more power.
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Production volumes of aJile’s aJ-100 processor are sched-
uled to be available in 4Q00 at a price of $15 per chip in
10,000-unit quantities. The aJ-PC104 development sys-
tem—which uses a JEM2 processor and an FPGA to pro-
vide the functionality of the aJ-100—is available now for
$599. For more information, see www.ajile.com.


