
© M I C R O D E S I G N R E S O U R C E S A U G U S T 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

Imsys hasn’t stopped trying to accommodate both sides by
offering an embedded processor with rewritable microcode
that natively runs Java or doesn’t, as you please.

When last we reported on Imsys, the fabless semicon-
ductor company was on the verge of shipping its GP1000,
which has a ready-to-run microcode library that natively exe-
cutes Java bytecode instructions (see MPR 12/28/98-03, “GP-
1000 Has Rewritable Microcode”). The GP1000 made it out
the door and found some customers, although its most pro-
minent design win—a color-printer engine made by another
Swedish company, Array AB—doesn’t use the chip’s Java ca-
pabilities. Imsys says some other customers are interested in
using the GP1000 as a Java chip, but they aren’t ready to pub-
licly announce their products.

Encouraged by the GP1000’s success, Imsys is introduc-
ing an enhanced version of the processor known as the Cjip—
which is pronounced “chip,” even though it substitutes a Java-
style “j” for the “h.” (Presumably, this works better in Swedish.)

The most interesting new feature of the Cjip is that
Imsys has developed an entirely new instruction set to sup-
plement the Java instruction set, which has also been im-
proved. The new instruction set, available as a microcode li-
brary, supports Forth or C and C++, using a Java-like stack
architecture. This leverages the Cjip’s stack memory and, says
Imsys, allows the C and C++ compilers to generate much
denser code. To prove the point, Imsys has developed an em-
bedded Linux operating system for the Cjip that requires only
650K of memory.

The Cjip is similar to the recently announced aJ-100
Java processor from aJile Systems (see MPR 8/7/00-02,

IMSYS HEDGES BETS ON JAVA
Rewritable-Microcode Chip Has Instruction Sets for Java, Forth, C/C++

By Tom R. Halfhi l l {8/14/00-04}

Depending on your point of view—and there seems to be no middle ground here—micro-

processors that natively execute Java bytecodes are as palatable as latte or as loathsome as

stained teeth. But in Sweden, where the spirit of neutrality still flourishes, a company called

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

Figure 1. The Cjip is a microcoded CISC processor designed for stack- or
register-based programming languages. Two-thirds of the microcode is
immutable, but the other third is stored in 18K of SRAM that’s rewritable
even after bootup.

Microcode
RAM
(18K)

Registers
33 GPRs & SPRs

Microcode
Control Logic

MAC Unit
Shift & Mask, Multiplier,
Extended Accumulator

ALU

Microcode
ROM
(36K)

Register Banks
8 Banks GPRs
String Buffers
Top of Stacks

8/16

33MHZ

Tr
ac

e

8

33MHZ

24

16

DRAM
Controller

Debug
Interface

Elapsed-Time
Counter

32kHz
Oscillator

PLL
66MHz

Oscillator

I/O Bus
Logic

GPIO
(24 Ports)

GP Output
(16 Ports)

DMA Controller

I/O Buffer
(2K SRAM)

2

“Embedded Java Chips Get Real”). Both companies have im-
plemented critical parts of Java’s virtual platform in microc-
ode on stack-based embedded processors. Another competi-
tor is Patriot Scientific’s PSC1000, which also has a stack-
based architecture that supports Java, C, or Forth (see MPR
4/15/96-01, “New Embedded CPU Goes ShBoom”).

All three companies seek customers that want to write
embedded applications in Java but have been deterred by the
relatively slow performance, large memory requirements, and
nondeterministic memory management of Java bytecode in-
terpreters, just-in-time (JIT) compilers, and Java virtual ma-
chines (JVMs). Imsys and Patriot are less religious about Java
than aJile and offer alternative instruction sets for customers
that feel likewise.

Lower Power Consumption
Fundamentally, the 16-bit Cjip is little changed from the
GP1000. As Figure 1 shows, the Cjip retains all the GP1000’s
unusual features, including a rewritable microcode store,
microcode-level concurrency, eight register banks for fast
context switching, on-chip stack and string buffers, a DMA
controller, a DRAM controller, and a multiply-accumulate
(MAC) unit. The die is only 16mm2 and is packaged in a
144-pin TQFP.

As with the latest version of the GP1000, the Cjip nom-
inally runs at 66MHz. The Cjip can maintain that clock fre-
quency over a voltage range of 2.7–3.6V. Boosting the lower-
voltage limit to 3.0V allows for increasing the clock frequency
to 80MHz and the DMA capacity from 33MB/s to 40MB/s,
although that would require faster DRAMs (50ns instead of
70ns). While the Cjip retains the integrated DRAM controller
found on the GP1000, it still works only with EDO DRAM;
using SDRAM (for availability reasons) would require some
external logic and wouldn’t be any faster. The DRAM can be
8 or 16 bits wide, and the Cjip can address up to 128MB.

One of the Cjip’s most significant improvements over
the GP1000 is that it consumes 50% less power—without the
benefit of a process shrink. (The Cjip is still fabricated in a
0.35-micron CMOS process by Ericsson Microelectronics.)
To achieve this, Imsys fixed a simple design flaw discovered
late in the development of the GP1000. In that processor, the
36K of microcode ROM and 18K of microcode SRAM both
draw power at the same time, even though only one memory
is accessed each cycle. By alternating power between the two
memories and making a few other improvements, Imsys
slashed the Cjip’s power consumption to 165mW, compared
with 330mW for the GP1000. And that’s 165mW when run-
ning a worst-case microcode loop at a nominal voltage of 3.3V,
so typical power consumption (though not yet measured by
Imsys) should be even less. At a nominal voltage of 3V, worst-
case power consumption drops to 135mW. In fact, the
66MHz Cjip consumes less power than the original 33MHz
GP1000.

For Imsys, rewritable microcode isn’t just a way to sup-
port multiple instruction sets. The Cjip also uses microcode

to manage memory and low-level concurrency, to add appli-
cation-specific instructions, and to implement “veripherals”
(virtual peripherals). A control program written entirely in
microinstructions handles multitasking at the microcode
level, almost like a small RTOS. It manages interrupts, I/O,
and priority scheduling for multiple microcode processes.
Special microcoded instructions created for Imsys’s printer
customers can perform such high-level tasks as halftone
screening, adaptive thresholding, and RGB-to-CMYK color-
space conversions.

Microcoded veripherals are substitutes for small periph-
erals that normally would be integrated on chip or added as
external devices. For instance, one veripheral is a timer that
can activate interrupt routines with 60-microsecond resolu-
tion. Other veripherals in the Imsys library are watchdog
timers, a real-time clock, an LCD controller, keyboard/
keypad controllers, sound generators, UARTs, an I2C inter-
face, an IEEE-1284 parallel interface, a multimedia card inter-
face, a stepping-motor controller, a finite-impulse-response
(FIR) filter, fax compression/decompression algorithms, and
an Ethernet device driver. Imsys will create additional ve-
ripherals to customer specifications. Veripherals that require
an off-chip interface use some of the Cjip’s 24 general-
purpose I/O (GPIO) ports or 16 general-purpose output ports.

Triscend takes a somewhat similar approach to soft-
peripheral integration (see MPR 11/16/98-02, “Triscend E5
Reconfigures Microcontrollers”). The main difference is that
Imsys writes the veripherals in microcode for a proprietary
16-bit architecture, while Triscend implements peripherals
in programmable logic around an industry-standard 8-bit
architecture (an 8032-compatible core). Also, Imsys does not
expose microcode programming to customers, while Tris-
cend provides a graphical development tool (FastChip) that
lets customers do the integration themselves.

In a more limited way, the Cjip’s veripherals are also
reminiscent of recent announcements by Altera and Xilinx.
Both those companies plan to make FPGAs with hard
embedded-processor cores (an ARM9 or a MIPS 4Kc for
Altera, and an unnamed PowerPC core for Xilinx) that leave
thousands or millions of programmable gates available for
implementing application-specific coprocessors and periph-
erals. But the Altera and Xilinx solutions will be significantly
larger, more power hungry, and more costly than the Cjip,
and they are unlikely to compete for the same customers.

Multiple Instruction Sets
By far the most interesting feature of the Cjip is its ability to
change instruction sets, even after booting up. The GP1000
has a proprietary Z80-like register-based instruction set, a
Java-bytecode instruction set, and a stack-based instruction
set optimized for C, C++, and Forth.

The new stack-based instruction set works with a new
C compiler from Astrosoft, a St. Petersburg–based company
headed by a former Soviet submarine captain. Astrosoft is
also developing a C++ compiler that’s scheduled for release in

© M I C R O D E S I G N R E S O U R C E S A U G U S T 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

Imsys Hedges Bets On Java

3

December. These compilers typically need only one byte to
encode an instruction and manipulate most operands on the
top of the stack. (The Cjip can store the top 256 bytes of the
stack on chip to minimize slow memory accesses.) According
to Imsys, the stack-based Astrosoft compilers produce very
dense code that compares favorably with Java bytecodes.

To further optimize the performance of code written in
high-level languages, Imsys is developing custom assembly-
level instructions that speed up C library functions and Java
API routines. Like the GP1000, the Cjip has special string-
handling instructions and a 256-byte on-chip string buffer.
Imsys has also increased the number of internal conditions
that microinstructions can test, which reduces the number
of steps in critical microcode loops.

To accelerate Java performance, the Cjip now main-
tains two stacks: a standard JVM stack (the “evaluation
stack”) and a stack for local variables (the “locals stack”). As
Figure 2 shows, the Cjip caches the tops of both stacks on
chip in the same 1K of SRAM that holds the eight duplicate
register banks.

To speed up the Java garbage collector, which periodi-
cally de-allocates memory no longer needed by objects, the
Cjip uses a special garbage collector written in microcode
and C. The aJile processor also implements a garbage collec-
tor in microcode, but with a further refinement: the aJ-100
can run multiple JVMs as independent processes and allow
each one to observe different rules for memory manage-
ment. One of those JVMs can guarantee real-time response
times by disabling the garbage collector altogether, while the
other JVMs operate normally. Imsys doesn’t claim that em-
bedded developers can write real-time applications in Java

for the Cjip. But real-time processes written in C, C++, as-
sembly language, or microcode can run in parallel with a
Java process to provide deterministic interrupt handling.

Like aJile with the aJ-100, Imsys has implemented the
JVM’s thread scheduler in microcode. This should signifi-
cantly improve the performance of Java software, because
Java encourages multithreading, and many classes in the Java
API are thread synchronized.

Compared with the GP1000, the Cjip implements a
larger percentage of the Java bytecode instruction set in
microcode—although still not as much as the aJ-100 does.
The Cjip executes about 84% of Java’s bytecode instructions
in microcode, compared with about 99% for the aJ-100. As
expected, the Cjip doesn’t implement the most complex and
rarely encountered bytecode instructions. Like other Java
chips, it traps and executes those bytecodes in software. But
even in some of those cases, the Cjip improves Java per-
formance by executing the trapped bytecodes with special
assembly-language instructions.

In fact, the Cjip natively executes so many low-level
functions of a JVM that it doesn’t need a JVM at all when it
is used with Imsys’s own embedded RTOS, known as
Moose. Together, the Cjip and Moose provide a Java plat-
form that complies with Sun’s Java 2 Micro Edition (J2ME)
for embedded systems. As Figure 3 shows, J2ME supports
multiple subplatforms aimed at different segments of the
embedded market.

The Imsys solution saves developers the cost of sepa-
rately licensing a JVM from Sun and an RTOS from another
party. In some cases, the unit-cost licenses for a J2ME-com-
pliant JVM and RTOS might cost more than the Cjip and
Moose ($19 in 10,000-unit volumes), so the Imsys package
is a bargain. A similar solution is offered by aJile: the aJ-100
costs $15 in 10,000-unit volumes, is also J2ME-compliant,
and doesn’t need a separately licensed JVM or RTOS either.

© M I C R O D E S I G N R E S O U R C E S A U G U S T 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

Imsys Hedges Bets On Java

Figure 2. For faster Java execution, the Cjip stores the tops of both
JVM stacks (the evaluation stack and the local-variables stack) in a
pair of 256-byte caches of on-chip SRAM. Another 256-byte region
of SRAM is a string buffer, and another 256-byte region stores the
register banks for microcode processes.

Register
Banks

(256 bytes)

String
Buffer

(256 bytes)

Evaluation
Stack Cache

(256 bytes)

Locals
Stack Cache

(256 bytes)

Microprogram Control

Background Tasks

Reserved

Reserved

Java

Four 32-bit GPRs

1K

16 Blocks
of 16 Bytes

Bank #1

Bank #2
Bank #3

Bank #4

Bank #5

Bank #6
Bank #7

Microprogram Control

Background Tasks

Bank #0

Figure 3. Java 2 Micro Edition is an embedded Java platform that
supports multiple “profiles” or subplatforms, each designed for a dif-
ferent class of embedded applications. Imsys has an RTOS that elimi-
nates the need for a separate J2ME-compatible JVM.

Imsys Cjip

Java Bytecodes

Java 2 Micro Edition

TV
Profile

Screen
Phone
Profile

Car
Profile

Handheld
Computer

Profile

Wireless
Profile

4

Avoiding the Java Jihad
By allowing developers to program the Cjip in C, C++,
Forth, and assembly language as well as in Java, Imsys is
hedging its bets for an embedded market that has yet to
embrace Java. Indeed, the Cjip offers the best of both worlds.
Because it allows processes written in other programming
languages to run alongside processes written in Java, it can
deliver real-time performance for critical control functions
while giving developers the option of using Java for higher-
level user-interface code. Java’s rich APIs are ideal for that
purpose. In the future, when the now-evolving real-time
specification for Java is adopted, developers can begin using
Java for the more critical functions, or they can stick with
their existing code.

When judged strictly as a Java processor, the Cjip is at a
disadvantage against aJile’s aJ-100. The aJ-100 is probably
faster by virtue of its higher clock frequency (100MHz vs.
66MHz), greater architectural width (32 bits vs. 16 bits), and
more extensive microcoding of Java bytecodes (99% vs.
84%)—although the scarcity of reliable Java benchmarks
makes that conclusion little more than an educated guess. Pow-
er consumption is very close: aJile claims less than 100mW for
the aJ-100, but that’s “typical” consumption at the chip’s nom-
inal core voltage of 2.5V. Imsys claims the Cjip’s worst-case
power consumption is 165mW at 3.3V or 135mW at 3V. Keep
in mind that the aJ-100 is manufactured in a 0.25-micron
process, while the Cjip is still at 0.35 micron. A process shrink
would put the Cjip in a more advantageous position.

Both processors comply with Sun’s J2ME specifica-
tion, and both offer a total solution that obviates the need
for a separately licensed RTOS. Only aJile promises that
software written in Java can deliver deterministic, real-time
interrupt handling. Imsys is partial to Java, but it isn’t a sol-
dier in the Java jihad to the same extent that aJile is. Partly
for this reason, and also because Imsys had a head start, the
Cjip’s predecessor already has some design wins to its
credit.

Neither the Cjip nor the aJ-100 would compete directly
against Sun’s stillborn microJava 701 (see MPR 11/17/97-02,
“MicroJava Pushes Bytecode Performance”) or other Java
chips based on its picoJava core. Sun designed picoJava to run
at clock frequencies upwards of 200MHz in a 0.25-micron
process, and the microJava 701 typically consumes 3–4W. The
Imsys and aJile processors are aimed at lower-performance,
lower-power embedded systems, including battery-powered
devices. Even so, one Imsys customer found the Cjip’s prede-
cessor fast enough for a color laser printer.

Patriot’s PSC1000, which has been shipping for about
four years, costs even less than the Cjip—under $10 in 10,000-
unit volumes. It’s a 32-bit processor with a 32-bit memory
interface, and it has on-chip memory for Java’s stacks. The core
frequency is 120MHz at 3.3V or 67MHz for a 5V part. Typical
power consumption is 125mW at 120MHz or 210mW at
67MHz. But unlike the Cjip or the aJ-100, the PSC1000 does-
n’t have a DRAM controller or as many integrated peripherals.
The PSC1000 requires a companion chip known as the VPU
(virtual peripheral unit) to handle some of the I/O and periph-
eral functions that are integrated in the Cjip and aJ-100.

Another competitor for native Java execution is JSTAR,
a licensable coprocessor that translates bytecodes into native
code and works with almost any CPU core (see MPR 3/27/00-
04, “JSTAR Coprocessor Accelerates Java”). JSTAR steps out
of the way when native code is executing, so it offers the same
options to use other programming languages as the Cjip. And
JSTAR is potentially a faster solution, because its performance
scales with the frequency of the host CPU. But JSTAR is
intended for ASIC integration, while the Cjip, aJ-100, and
PSC1000 are standard parts. If time to market is a critical re-
quirement, or if a customer lacks the resources to design an
ASIC, an off-the-shelf solution is better.

Imsys has invested considerable effort in developing a
Java personality for the Cjip (and for its predecessor, the
GP1000), so obviously the company believes Java has a future
in embedded systems. Others remain unconvinced. The lack-
luster reception for Java chips—and for past attempts to sell
language-specific processors—is not a good sign. Ultimately,
processors like the Cjip, aJ-100, and PSC1000 must compete
against dozens of embedded processors that may have higher
performance, lower power consumption, greater integration,
or lower cost. Embedded developers must decide if those
advantages are worth sacrificing for the claims that Java is a
safer, more productive, and more portable programming lan-
guage. Although we think those claims have a great deal of
merit, we also like the strategy favored by Imsys—offering
developers the options of using Java exclusively, sparingly, or
not at all.

© M I C R O D E S I G N R E S O U R C E S A U G U S T 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

Imsys Hedges Bets On Java

To subscribe to Microprocessor Report, phone 408.328.3900 or visit www.MDRonline.com

P r i c e & Av a i l a b i l i t y

Production volumes of the Imsys Cjip are scheduled to be
available in September for $19 in 10,000-unit quantities.
A Windows-based development kit that includes a Cjip on
a PCI evaluation board, the Moose RTOS, and the Imsys
Developer software (which supports Java, C, and assem-
bly language) costs $995 and will also be available in Sep-
tember. For more information, go to www.imsys.se.

