
© I N - S T A T / M D R M A R C H 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

from the very beginning, Sun had conceived Java as a pro-
gramming language and virtual platform for an embedded
application—interactive TV set-top boxes. Perhaps it is in-
evitable that Java is returning to its roots.

Today, Java is showing up in all kinds of embedded sys-
tems, from PDAs to next-generation mobile phones. Of
course, it’s also popular on servers. In fact, Java is successful
just about everywhere except the platform that Sun wanted
to conquer most: the desktop PC. The irresistible force of
Sun is still having trouble overcoming the immovable object
in Redmond—but that’s another story.

Now some companies are pushing Java into a very dif-
ferent frontier: deeply embedded applications that demand
hard real-time performance. Examples might include motor
controllers, industrial machinery, smartcards, automotive
telematics, and other mundane systems that aren’t as sexy as
Web-browsing, game-playing cell phones but nevertheless
keep the world turning. These applications require high reli-
ability, frugal memory consumption, low cost, low power,
and fast response to real-time interrupts—qualities not usu-
ally associated with Java.

One of the first pioneers to explore this territory was
aJile Systems, which makes a standard-part Java microcon-
troller. (See MPR 8/7/00-02, “Embedded Java Chips Get
Real.”) Another contender is the Imsys Cjip, a rewritable-
microcode chip that has instruction sets for Java, C, and
Forth. (See MPR 8/14/00-04, “Imsys Hedges Bets On Java.”)
Now, San Diego–based Octera is introducing Javalon-1, a

synthesizable microprocessor core that natively executes Java
bytecode instructions. Javalon-1 is the first member of a
small family of cores that will have minor variations on the
same basic design. Chip designers can use Javalon-1 as the
basis for a self-sufficient microcontroller or as a slave to
another microprocessor core on an SoC or ASIC.

Javalon-1’s memory requirements are unusually low
(about 5K of firmware, not counting application memory).
It doesn’t need a Java virtual machine (JVM), a Java byte-
code interpreter, or a just-in-time (JIT) bytecode compiler,
because it natively executes Java bytecode instructions in
hardware or software. It doesn’t use a garbage collector to
manage memory, so it’s deterministic and has relatively low
interrupt latencies (about 100 clock cycles, worst-case).
And it’s suitable for small embedded systems because it’s
compact (about 25,000 logic gates). Octera is wrapping up
the design work now and plans to begin licensing Javalon-1
in 3Q03.

What’s the catch? Javalon-1 isn’t officially a Java proces-
sor, because it doesn’t fully comply with Sun’s Java specifica-
tions. In general, it follows the Java 2 Micro Edition (J2ME)
and Connected Limited Device Configuration (CLDC)
guidelines, but it makes several compromises to achieve its
fast interrupt response, efficient memory usage, and low gate
count. Javalon-1 is more accurately described as a Java-like
processor or as a processor that executes Java bytecodes with-
out fully supporting a Sun-standard Java platform. Some of
Octera’s trade-offs are sure to be controversial.

OCTERA THROWS A JAVALON
Java-like Synthesizable Processor Targets Deeply Embedded Systems

By Tom R. Halfhi l l {3/17/03-02}

Only a few years ago, engineers despaired of using Java for real-time embedded applica-

tions because of its obesity and nondeterministic behavior. Java seemed more suitable for

desktop PCs and servers that could satisfy its appetite for megabytes and megahertz. Yet,

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

© I N - S T A T / M D R M A R C H 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Octera Throws a Javalon

Instruction Description Instruction Description Instruction Description
aaload Load ref from array fload_<n> Load float from local var l2d Convert long to double
aastore Store into ref array fmul Multiply float l2f Convert long to float
aconst_null Push null fneg Negate float l2i Convert long to int
aload Load ref from local var frem Remainder float ladd Add long
aload_<n> Load ref from local var freturn Return float from method laload Load long from array
anewarray Create new array of ref fstore Store float into local var land Boolean AND long
areturn Return ref from method fstore_<n> Store float into local var lastore Store into long array
arraylength Get length of array fsub Subtract float lcmp Compare long
astore Store ref into local var getfield Get field from object lconst_<l> Push long
astore_<n> Store ref into local var getstatic Get static field from class
athrow Throw exception or error goto Branch always
baload Load byte/boolean from array goto_w Branch always (wide index)
bastore Store into byte/boolean array i2b Convert int to byte
bipush Push byte i2c Convert int to char
breakpoint* Breakpoint for debugger i2d Convert int to double
caload Load char from array i2f Convert int to float
castore Store into char array i2l Convert int to long ldiv Divide long
checkcast Check object type i2s Convert int to short lload Load long from local var
d2f Convert double to float iadd Add int lload_<n> Load long from local var
d2i Convert double to int iaload Load int from array lmul Multiply long
d2l Convert double to long iand Boolean AND int lneg Negate long
dadd Add double iastore Store into int array
daload Load double from array iconst_<i> Push int
dastore Store into double array idiv Divide int lor Boolean OR long
dcmp<op> Compare double if_acmp(cond) Branch if ref compare true lrem Remainder long
dconst_<d> Push double if_icmp(cond) Branch if int compare true lreturn Return long from method
ddiv Divide double if(cond) Branch if int=0 lshl Shift left long
dload Load double from local var ifnonnull Branch if ref not null lshr Arithmetic shift right long
dload_<n> Load double from local var ifnull Branch if ref=null lstore Store long into local var
dmul Multiply double iinc Increment local var by const lstore_<n> Store long into local var
dneg Negate double iload Load int from local var lsub Subtract long
drem Remainder double iload_<n> Load int from local var lushr Arithmetic shift right long
dreturn Return double from method lxor Boolean XOR long
dstore Store double into local var monitorenter Enter monitor for object
dstore_<n> Store double into local var monitorexit Exit monitor for object
dsub Subtract double
dup Duplicate top stack operand imul Multiply int

ineg Negate int new Create new object
instanceof Compare object type newarray Create new array
invokeinterface Invoke interface method nop No operation

pop Pop top stack operand

invokestatic Invoke static method
invokevirtual Invoke instance method putfield Set field in object
ior Boolean OR int putstatic Set static field in class
irem Remainder int ret Return from subroutine
ireturn Return int from method return Return void from method
ishl Shift left int saload Load short from array

f2d Convert float to double ishr Arithmetic shift right int sastore Store into short array
f2i Convert float to int istore Store int into local var sipush Push short
f2l Convert float to long istore_<n> Store int into local var
fadd Add float isub Subtract int
faload Load float from array iushr Logical shift right int
fastore Store into float array ixor Boolean XOR int
fcmp<op> Compare float jsr Jump to subroutine
fconst_<f> Push float
fdiv Divide float
fload Load float from local var

wide Extend local var index
by bytes

ldc Push from runtime
const pool

ldc_<w> Push from runtime const
pool, wide index

ldc2_<w> Push long or double from
run-time const pool,

wide index

lookupswitch Access jump table
by key match and jump

dup2_x1 Duplicate top 1 or 2 stack values,
insert 2 or 3 values down

dup2_x2 Duplicate top 1 or 2
stack values,

insert 2, 3, or 4 values down

dup_x2 Duplicate top stack operand,
insert 2 or 3 values down invokespecial Invoke instance method

with special handlingdup2 Duplicate top 1 or
2 stack values

dup_x1 Duplicate top stack operand,
insert 2 values down

impdep1* Implementation-specific
trap

impdep2* Implementation-specific
trap

jsr_w Jump to subroutine (wide
index)

multianewarray Create new
multidim array

pop2 Pop top 1 or 2
stack operands

swap Swap top two stack
operands

tableswitch Access jump table
by index and jump

Table 1. The Java bytecode instruction set has 204 instructions, including three reserved instruction slots. This table shows only 151
mnemonics, because some instructions (such as aload_<n>) have multiple numbered mnemonics (aload_1, aload_2, etc.) for differ-
ent operand types. Operand types are byte (8 bits), short (16-bit integer), int (32-bit integer), long (64-bit integer), float (32-bit floating-
point), and double (64-bit floating-point). Gray cells in this table indicate floating-point instructions not supported by Javalon-1. *These
opcodes are reserved for debuggers and implementation-specific instructions; they never appear in standard Java class files.

3

Genesis of a Core
If you’ve never heard of Octera, it’s probably because Javalon-1
is the company’s first venture into intellectual-property (IP)
licensing. Octera is primarily an embedded-systems design
center with experience in ASICs, SoCs, and board-level
design. Some of Octera’s founders and managers have been
working with stack-based computers since the days of Bur-
roughs and Unisys, so they feel at home with Java’s retro stack
architecture. They have also noticed that universities are
turning out thousands of young programmers who are more
comfortable with Java than with assembly language and C,
the longtime staples of embedded-system development.
Octera thinks the time is ripe for a microprocessor core that
can execute Java bytecodes in hard real-time applications.

Javalon-1 is the product of a four-year design effort.
The processor has a 32-bit stack-based architecture created
from scratch to run Java bytecodes and nothing else. Most
microprocessors, of course, have a native machine language
unrelated to any particular high-level programming lan-
guage. In contrast, Javalon-1’s machine language is derived
from the Java bytecode instruction set—the processor has no
other machine language.

Bytecodes are the virtual machine instructions in Java
class files that an interpreter or JIT compiler normally
translates into native executable code at run time. As their
name implies, bytecodes are 8 bits long, and they manipu-
late operands ranging in size from 8 to 64 bits. Table 1 lists
all the instructions in the Java instruction-set architecture
(ISA), some of which aren’t supported by Javalon-1.

The Java ISA is unusual when compared with other
microprocessor ISAs, mainly because Sun designed it prima-
rily as a software virtual machine, not for implementation in
logic as a conventional microprocessor. Sun optimized the
Java ISA for high code density (hence the byte-sized instruc-
tions) and for easy portability to any CPU architecture. The
ISA also has several unusual instructions that support the
object-oriented features of the Java programming language.

Because Sun’s Java definition largely determined the
processor’s architecture, Javalon-1 is a rudimentary stack-
based CISC machine. Octera also kept the microarchitec-
ture simple. There is no instruction pipeline in the usual
sense, unless you consider the fetch and execution units to
be a two-stage pipe. For the sake of determinism, there are
no conventional instruction or data caches, because their
behavior is unpredictable. Nor are there any programmer-
visible registers, because Java bytecode instructions manip-
ulate all their operands on the stack.

Although it’s possible for programmers to directly access
the stack with low-level bytecode instructions—Java bytecode
assemblers are rarely used but available—the stack is com-
pletely transparent to high-level Java-language programmers.
In effect, Javalon-1 is a black box from the Java programmer’s
point of view. Figure 1 shows what’s inside the box.

The only registers in Javalon-1 are a small top-of-
stack cache and a handful of datapath registers for internal

bookkeeping. There is also a small instruction-fetch buffer.
Different members of the Javalon family will have stack
caches and fetch buffers of different sizes. Javalon-1 has a
mere three-entry stack cache, 32 bits wide, and an eight-byte
fetch buffer, enough for eight instructions. According to
Octera’s code profiling, those are the minimum sizes for a
stack cache and fetch buffer that are large enough to signifi-
cantly boost performance while scarcely affecting the size of
the core; they add only about 1,000 gates. Octera found that
a stack cache with fewer than three entries caused excessive
memory thrashing, canceling any advantage from the cache.

For customers that want higher performance at the
expense of, perhaps, a couple of thousand more gates, Octera
will offer an eight-entry stack cache and a slightly larger
instruction-fetch buffer, doubling the processor’s perform-
ance. That may seem like a surprising improvement for such
minor enhancements, but Octera says the larger cache and
fetch buffer dramatically reduce memory contentions
between the fetch and execution units. Nevertheless, the
enhancements aren’t a standard feature in Javalon-1, because
Octera believes the processor’s performance already exceeds
requirements for the intended market. The deeper cache and
fetch buffer are luxuries for those who want them.

Javalon-1’s internal datapath registers keep track of
the stack pointer, class-file index, local-variable index, and
other Java housekeeping details. Java programmers will
never see them. The fetch unit, shown in Figure 1, prefetches
instructions into the fetch buffer and hands them off to the
execution unit for decoding and execution. The most com-
mon instructions execute in a single clock cycle. If Octera

© I N - S T A T / M D R M A R C H 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Octera Throws a Javalon

Figure 1. Javalon-1 block diagram. There are no programmer-visible
register files or instructions other than what’s available in the Java byte-
code definition. Internal datapaths are 32 bits wide. Note the AMBA
High-speed Bus (AHB) interface, which allows chip designers to use
Javalon-1 with other microprocessor cores and peripheral IP.

AMBA
AHB

32

32

20 20 20

Loader Image
Base Addr

Runtime Mem
Base Addr

Runtime Mem
Top Addr

(Strapped Address Ports)

Level-Sensitive Interrupts Clock Input

Read

Write

Addr
20

Execution Unit

Control Logic

ALU

Datapath
Registers

Top of Stack
Cache

(3 x 32b)

Memory
Interface

Fetch Unit

4

perceives demand for a more powerful processor, a future
Javalon might have superscalar pipelines and a fetch unit
that predecodes instructions for the execution units. For
now, Octera is keeping the core as small as possible.

Thanks to the core’s fast datapaths and simple microar-
chitecture, Octera estimates that Javalon-1 could run at
300MHz (worst case) in a 0.13-micron CMOS process. How-
ever, the company believes anything close to 300MHz is
overkill for the vast majority of deeply embedded applica-
tions, which probably use 8- or 16-bit processors today.
Therefore, Octera expects most customers to run Javalon-1 at
a more leisurely pace of 1MHz to 10MHz, which would drop
power consumption to extremely low levels.

Octera’s engineers have early implementations of the
processor running at 50MHz in an FPGA and expect to
reach 100MHz soon. That’s fast enough for many embed-
ded controllers. Indeed, a low-volume embedded system
could forgo the high nonrecurring engineering costs of
spinning a silicon chip and deploy the Javalon-1 in a PLD
instead. With about 25,000 ASIC gates, the core fits into a
150,000-programmable-gate FPGA costing about $20.

Trashing the Garbage Collector
Because Javalon-1 natively executes Java bytecodes, it doesn’t
need a bytecode interpreter or JIT compiler. That alone can
save a megabyte or more of memory, especially since JIT
compilers create a duplicate memory image of each program
they translate (the bytecode version and the recompiled
native version). In fact, Javalon-1 doesn’t need a JVM at all,
because it either renders the functions of a JVM redundant
or omits the features that would require a JVM.

For example, to eliminate Java’s prime source of nonde-
terministic behavior, Javalon-1 dispenses with the JVM’s
garbage collector. Normally, Java relieves programmers of the
burden of memory management by automatically allocating
and deallocating memory while a program executes. The

JVM does this by running a garbage-collection routine in a
background thread to periodically free up memory no longer
referenced by objects. Unfortunately, garbage collection is an
unpredictable and fairly heavyweight task that can seriously
impair a system’s ability to respond to real-time events.

Octera’s solution is simple: never deallocate memory.
Any memory allocated for an object remains encumbered
for as long as the program runs. This eliminates the need
for a garbage collector, but it also shifts the burden of
memory management back to the programmer. Programs
written for Javalon-1 must create all their objects at startup
and ensure there’s enough memory to accommodate them
at runtime.

This is sacrilege to Java purists, who will protest that
Octera’s solution negates one of the biggest advantages of
Java and reintroduces a probable source of bugs that plagues
C/C++. However, Javalon-1 programs should never suffer
from memory leaks—a common memory-management
problem in C programs—because they’re required to initial-
ize all objects at startup and never deallocate the memory. In
effect, a Javalon-1 program “leaks” all its memory during ini-
tialization and never needs more, because it doesn’t create
any additional objects.

Contrary to popular belief, garbage collection isn’t
required by Sun’s JVM specification, which Javalon-1 doesn’t
religiously follow anyway. The official specification states
that the JVM “assumes no particular type of automatic stor-
age management system, and the storage management tech-
nique may be chosen according to the implementor’s system
requirements.” (Sun’s JVM specification is available online at
http://java.sun.com/docs/books/vmspec/.)

Nevertheless, Octera isn’t deaf to the cries of Sun wor-
shippers. The company says future members of the Javalon
family may restore automatic memory management, at least
as an option. There are simpler alternatives to a garbage col-
lector, such as object-reference counters.

© I N - S T A T / M D R M A R C H 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Octera Throws a Javalon

Octera's Javalon-1 design team, from left: Laury Flora, David Castle, Dale Rigtrup, Bob Noble, Randy Rhodes, Lee Burke, Howard Keller, Jill Kiggens,
Joe Mizerak, Gary Whitlock, Carlos Guerra, and Paul Nunnally.

5

Different Ways of Going Native
Another Java feature that Javalon-1 makes redundant—in the
usual sense, at least—is native method calls. To Java program-
mers, a native method call is the ability to run program code
written in another language (such as C/C++ or assembly lan-
guage) from a Java program. Normally, when a JVM encoun-
ters a native method call, it hands off execution to the system’s
host processor, which executes the native code and returns any
results to the Java program. Native methods are generally the
last resort for subroutines that simply won’t run fast enough
in 100%-pure Java. They also provide a gateway to legacy code
so programmers don’t have to rewrite a whole project in Java.

In a Javalon-1 system, however, there may not be
another host processor, so Java bytecodes are the native
machine language. In that sense, Javalon-1 doesn’t support
native methods compiled to executable code for other proces-
sors, because it can’t run anything but Java bytecodes. This
limitation sets Javalon-1 apart from some other embedded
processors with bolt-on Java accelerators, such as the
ARM1026EJ-S, ARM1136JF-S, and ARCtangent-A5. (See
MPR 10/21/02-02, “MPF Hosts Premiere of ARM1136.”)

Nevertheless, Javalon-1 does support native methods—
just not in the way most Java programmers would think.
Sun’s JVM specification opens a little-known door for defin-
ing implementation-specific bytecode instructions that aren’t
part of the standard Java ISA. Indeed, the ISA reserves two
opcodes for this purpose, with the mnemonics impdep1
and impdep2 (seen in Table 1). Although implementation-
specific instructions are verboten in standard Java class files,
programmers can use them in subroutines called as native
methods. And because subroutines with implementation-
specific Java bytecodes deviate from the standard Java ISA,
technically speaking, they are native methods.

In that sense, then, Javalon-1 supports native methods.
Octera has created about a half-dozen proprietary instruc-
tions that it prefers not to disclose publicly at this time.
Octera has also created a bytecode assembler that recognizes
those instructions as well as standard instructions. The pro-
prietary instructions appear in native methods stored in the
processor’s supporting firmware. Among other things, they
help execute some standard instructions that Javalon-1 doesn’t
implement in logic. (More on this later.)

Developers who port existing Java code to Javalon-1
will have to rewrite their C/C++ or assembly-language
native methods in Java. One of the tools Octera supplies will
scan Java programs for native method calls so they won’t be
overlooked.

No Downward Class Mobility
To conserve memory, Javalon-1 also doesn’t use the Sun-
standard Java class-file format. Class files are the product of
a Java compiler that converts high-level Java source code into
bytecodes. Java class files contain a great deal of symbolic
information about variables, objects, and other structures,
because, usually, the class files aren’t directly executable: a

Java interpreter or JIT compiler must translate them into the
native machine language of the underlying hardware. But
because Javalon-1 does execute bytecodes without further
translation, it can dispense with some redundant informa-
tion in the class files and save some application memory.

One downside of abandoning the standard class-file
format is that Javalon-1 isn’t suitable for embedded systems
that must be compatible with the universe of Java software.
For example, next-generation mobile phones and PDAs that
can download and execute Java applets must be able to han-
dle standard Java class files. Ditto for embedded Web
browsers that need to run Java applets.

However, a nonstandard class-file format is an accept-
able compromise for a deeply embedded system that doesn’t
need to dynamically load and run new classes. Indeed, a cre-
ative product manager could even pitch it as a security feature
that prevents malicious hackers from altering the software of
mission-critical systems.

Instead of using standard Java class files, Javalon-1 uses
a slightly modified, proprietary version of the Java Executable
File Format (JEFF). JEFF was created by the independent J
Consortium and was adopted as an ISO standard (ISO/IEC
DIS 20970) in 2001. JEFF compresses Java class files to save
memory and improves upon the Java archive (JAR) format,
an older compressed class-file format created by Sun. Among
other things, JEFF allows Java classes to execute from ROM, a
valuable feature for embedded systems. (For more informa-
tion about JEFF, visit the J Consortium’s Web site at www.j-
consortium.org/.)

Octera, a member of the J Consortium, modified JEFF
to make the class files even more compact and easier for
Javalon-1 to decode. Dynamic class loading is sacrificed, but
this also eliminates the need for a conventional class loader
and verifier, two other runtime components that occupy
memory in a JVM. Octera will provide a design-time utility
that converts standard JEFF class files into the modified
JEFF files that Javalon-1 requires. Another tool in the pack-
age is Octera’s own JEFF generator, which converts standard
class files into JEFF files, although other JEFF generators
may also work.

A Few More Missing Pieces
Octera deleted a few more features from the standard Java
platform that were deemed irrelevant for embedded con-
trollers, such as support for a computer keyboard and mouse.
If a more sophisticated embedded system (such as a point-of-
sale terminal) requires those devices, Javalon-1 could func-
tion as a slave to another processor via the AMBA bus.

Two more-serious omissions are multithreading and
floating-point math. Multithreading is a stellar feature of
Java—built-in classes make it easy to implement—but Octera
believes that thread management would use too much mem-
ory and impair the processor’s real-time response. Likewise,
Javalon-1 doesn’t support floating-point math at all, either in
hardware or software. Octera says a software floating-point

© I N - S T A T / M D R M A R C H 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Octera Throws a Javalon

6

package could occupy as little as 1K of memory, but it would
be slow and isn’t written yet. Until then, the workaround is to
use scaled integers—or a host processor.

In a more familiar compromise, Javalon-1 executes
about 80 of the most-complex or seldom-used Java bytecode
instructions in software instead of in logic. It’s difficult to jus-
tify the extra gates required to implement some bytecode
instructions in logic; every Java processor we’ve seen traps at
least a few instructions for software execution. For instance,
the instruction that creates a new multidimensional array
(multianewarray) occurs infrequently and requires an
indeterminate number of cycles to execute, depending on the
data type and dimensions of the array it must construct. The
most thoroughly hard-wired Java processor is aJile’s aJ-100,
which executes all but two bytecode instructions in hardware:
multianewarray and athrow.

Deciding which instructions to implement in logic and
which in software depended not only on how often the
instruction occurs and its complexity but also on its effect on
real-time performance. The reason that Javalon-1 requires
as many as 100 clock cycles to service an interrupt—which
is somewhat high, by hard real-time standards—is that it
can stop executing a complex instruction in software, save
the partial state, service the interrupt, restore the partial
state, and resume execution where it left off. Javalon-1 can
do this even while executing in software an instruction for
an interrupt-service routine that is interrupted by a higher-
priority interrupt.

Octera says future Javalon processors will slash the
worst-case response time to five to ten clock cycles by imple-
menting more instructions in logic. With Javalon-1, the most
complex hardware instruction executes in only eight clock
cycles (or perhaps a few more, depending on memory con-
tention and the state of the stack cache). Therefore, when
Javalon-1 is executing the most-common instructions likely
to occur in embedded-controller code, its interrupt-response
time is much better than 100 clocks.

Javalon-1 executes a few instructions in software that
could significantly affect performance in other ways, depend-
ing on the application. The most important of these are inte-
ger multiplication and division operations. Octera has de-
signed hardware implementations of those instructions, but
they require about 5,000 gates, so Javalon-1 executes them
in software instead. The company says a future, higher-
performance member of the Javalon family will probably use
the hardware multiply/divide implementations.

Thanks to all these economies, Javalon-1 requires only
5K of supporting firmware, exclusive of application mem-
ory. The firmware includes the software routines that trap
and execute instructions not supported in logic, plus some
miscellaneous native methods. All are written in Javalon-1’s
native machine language: Java bytecodes augmented by
Octera’s proprietary bytecodes.

In silicon, a Javalon-based chip should compare favor-
ably with other 32-bit embedded processors, whether they

can natively execute Java bytecodes or not. At 25,000 gates,
Javalon-1 is about the same size as a small ARM or ARC core,
especially after the addition of a Java accelerator, such as
ARM’s Jazelle or DCT’s Bigfoot. (See MPR 2/12/01-01, “Java
to Go: Part 1,” and MPR 1/28/02-04, “DCT Marches Into Java
Processors.”) Javalon-1’s firmware is small enough to fit
inside on-chip flash memory or mask ROM, probably occu-
pying about as much room as the instruction and data caches
of a conventional embedded processor.

By Java standards, 5K of firmware is positively micro-
scopic. Normally, a standard JVM requires hundreds of
kilobytes or megabytes, especially if it includes such luxuries
as a JIT compiler. Even Sun’s stripped-down K virtual
machine (KVM) for J2ME typically occupies 128K of mem-
ory and requires still more memory to operate. Of course,
J2ME is a Sun-standard Java platform that has many fea-
tures Javalon-1 lacks.

Is It Coffee or Postum?
Octera makes no claims that Javalon-1 provides a Sun-
standard Java platform. Obviously, Octera’s designers made
several compromises in their quest to bring some flavor of
Java to deeply embedded real-time controllers. Squeezing
everything down to 25,000 gates and 5K of firmware simply
isn’t possible without discarding some baggage. The first
question for developers is whether they need anything in
that discarded baggage to reach their destination.

The list of what’s missing appears lengthy: automatic
memory management, native method calls (in the usual
sense), universal class-file compatibility, dynamic class load-
ing, keyboard/mouse support, multithreading, and floating-
point math. Keep in mind, however, that those features are
uncommon in embedded controllers of any flavor. They
seem like sacrifices only to developers accustomed to using
a richer Java platform on larger systems.

The next question is whether there’s enough Java left
in Javalon-1 to make it a better alternative than any other
embedded processor. The answer is a qualified yes. Octera’s
diluted version of Java still has some advantages over pro-
gramming in C and assembly language, including easier
code portability to other embedded processors in the future,
whether those processors are Java-native or not.

Still, some Java features will be sorely missed. Automatic
memory management improves programmer productivity
and eliminates a common source of bugs. The ability to
invoke native methods written in C or assembly language
preserves investments in legacy code. Standard class-file com-
patibility and dynamic class loading are imperative for Java-
enabled Web browsers and applications that must download
periodic software updates in the field. Multithreading is
invaluable for managing multiple tasks. Floating-point math
may be required for some controllers. If a project depends on
any of those features, Javalon-1 isn’t the best solution.

Finally, there’s the question of whether Javalon-1 can
satisfy the performance requirements of an application. Is it

© I N - S T A T / M D R M A R C H 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Octera Throws a Javalon

7

fast enough to run the software at the specified power level,
and will it respond quickly enough to real-time interrupts?

Benchmark data for Java processors is hard to come by;
the often-quoted CaffeineMark is a poor substitute for a rig-
orous embedded test suite. EEMBC has a new suite of
embedded Java benchmarks, but because Javalon-1 isn’t
100% Java compatible, the benchmark code probably won’t
run without extensive modifications. For now, the best way to
evaluate Javalon-1 is to extrapolate from its performance in a
simulator or FPGA.

Our conclusion is that Javalon-1 will be exactly what
some developers are looking for. Others will find Javalon-1’s
compromises too bitter to swallow. And many developers will
remain skeptical that Java is appropriate for hard real-time
applications at all. Selling the concept is a bigger challenge
than selling the processor. Previous embedded Java proces-
sors have found a mixed welcome in the marketplace, with at
least one company—Vulcan Machines—recently folding its
tent. (See MPR 7/1/02-03, “Vulcan Moon Shines Again.”)

On the other hand, ARM is enjoying some success
with its Jazelle accelerator for the ARM10 and ARM11

cores, and ARC is tempting similar customers with DCT’s
Java extensions for ARCtangent-A5. What Octera has in
common with ARM and ARC is that embedded Java
processors are not central to its business. Octera is still pri-
marily an independent design house; Javalon-1 isn’t a bet-
the-company proposition.

For embedded-system developers, more choices are
always better than fewer choices. Octera’s Javalon family is a
different and creative new option.

© I N - S T A T / M D R M A R C H 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Octera Throws a Javalon

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

P r i c e & Av a i l a b i l i t y

Octera plans to begin licensing the Javalon-1 processor
core in 3Q03. It will be supplied in Verilog or VHDL with
some special development tools, including a JEFF class-
file generator and a JEFF-to-Javalon converter. Future
Javalon-family cores will be announced later. Licensing
fees have not yet been determined.

