Q\ Reed Electronics Group

M| G 0-P.R 0.6 E3 9.0 F

www.MPRonline.com

< THE INSIDER’S GUIDE TO MICROPROCESSOR HARDWARE <

ELIXENT EXPANDS SOCS

Licensable Array Processor Has Massively Parallel Architecture

By Tom R. Halfhill {7/21/03-01}

Seeking a soft spot between a rock and a hard place, U.K.-based Elixent is introducing a

massively parallel processor core that strives to combine the programmability of a general-

purpose processor with the performance of a hard-wired ASIC. The goal: a more flexible

system-on-chip (SoC) processor that consumes less power
and adapts quickly to different tasks, amortizing the devel-
opment costs of an SoC over multiple projects.

Elixent, a three-year-old spinoff from Hewlett-
Packard Labs, described its new D-Fabrix architecture at
Embedded Processor Forum 2003. The D-Fabrix is based
on a concept that Elixent calls reconfigurable array process-
ing (RAP). It’s similar to the reconfigurable compute fabric
(RCF) in the MRC6011 processor that Motorola also pre-
sented at Embedded Processor Forum. (See MPR 7/14/03-
01, “Motorola Attacks ASICs.”) A key difference is imple-
mentation: Elixent licenses the D-Fabrix as a hard macro
for SoC integration, whereas Motorola offers the MRC6011
as a standard part.

Both Elixent and Motorola use the term “reconfig-
urable” rather loosely. Neither processor has reprogramma-
ble gate-level logic, like that found in FPGAs. The Elixent
core is structurally configurable by SoC developers at
design time, but the logic remains static at run time. The
Motorola processor, available only as an off-the-shelf chip,
isn’t structurally configurable by customers at all. Instead,
both processors have arrays of small function units with
local registers and tightly coupled memories, all woven
together by a fabric of datapaths. The function units are
independently programmable at run time and execute their
tasks locally, without fetching instructions from off-chip or
distant on-chip memory over a bus. This frees the fabric’s
I/O bandwidth for data throughput.

Another feature common to both the Elixent and
Motorola architectures is an integrated RISC microproces-
sor core, which acts as a central controller for the process-
ing array. In addition to supervising the flow of data, the
RISC controller can load new programs to reprogram the
array processors for different tasks or for different parts of
a single task. In most cases, this can happen fast enough to
make changes on the fly.

MPR prefers to call these processors reprogrammable
or run-time-programmable rather than reconfigurable,
because their logic is static at run time. (See the sidebar,
“Defining Reconfigurable Processing” in MPR 7/14/03-01,
“Motorola Attacks ASICs.”)

Nevertheless, the Elixent and Motorola processors offer
a different model of execution than do general-purpose
microprocessors and programmable DSPs. Conventional
processors execute a common stream of instructions fetched
over a bus from on- or off-chip memory that is global to all
the function units. In addition, function units of the same
data type share a global register file. The Elixent and
Motorola processors can simultaneously execute independ-
ent streams of instructions fetched from on-chip memory
that’s local to each function unit, and each unit has its own
local register file.

A Checkerboard of ALUs
At the heart of Elixent’s D-Fabrix architecture is a scalable
array of muxes and four-bit ALUs with local registers and

© IN-STAT/MDR &

JULY 21, 2003 <

X

MICROPROCESSOR REPORT

2 Elixent Expands SoCs

closely coupled memories, all connected together by a fabric
of datapaths. There are no other types of function units—no
adders, shifters, or multipliers. The ALUs perform those
arithmetic functions, singly or in concert. To carry out 32-bit
integer operations, for example, an application could repro-
gram the array to combine eight of the four-bit ALUs into a
pipelined 32-bit integer unit.

The basic D-Fabrix building block is called a tile, which
contains two four-bit ALUs and six local registers. Elixent says
there are no architectural or electrical limits to the number of
tiles a designer can integrate in an SoC; the practical limits are
power consumption, cost, and die size. A typical SoC will
have 128 to 2,048 tiles, although much larger devices are pos-
sible. As a rough guide, a JPEG encoder capable of compress-
ing 100 million pixels per second could be implemented with
256 tiles in a chip that runs at 100MHz. Dedicating more tiles
to a task that can execute in parallel will increase performance
at a near-linear rate.

Each ALU in a tile has about 100 ASIC-equivalent gates.
However, gate-count comparisons with ASICs are not very
useful. Because the ALUs are programmable, they can per-
form multiple tasks that would require many more gates to
implement in a fixed-function ASIC.

On the other hand, a D-Fabrix SoC probably won’t run
as fast as an ASIC. Due to the architecture’s complexity, the
worst-case clock frequency is only about 100MHz at 0.18
micron and 150MHz at 0.13 micron. Elixent has character-
ized the hard macro for some common 0.18- and 0.13-
micron CMOS processes at leading foundries, and Toshiba is
producing a D-Fabrix processor (the ET1) at 0.13 micron.
Porting the core among different 0.13- or 0.18-micron
processes is relatively straightforward, but moving it to a 90-
nanometer process would require a re-layout, as with any
hard macro. The core is a fully static design, so lower clock

frequencies are feasible if power consumption becomes a
more important issue than performance.

Elixent provides the core as a GDS-II macro with
register-transfer-level (RTL) Verilog and VHDL models. It’s
more flexible than a conventional hard macro, which usually
has a fixed layout that customers cannot change. The D-Fabrix
core is perhaps better described as a firm macro, because
designers can scale the number of tiles in the core with a tool
that Elixent calls the Array Generator. The Array Generator
is like a sophisticated memory compiler, because it allows
designers to combine several basic elements of a structure
(in this case, processor arrays instead of memory arrays) to
build a larger structure.

As Figure 1 shows, the physical layout of the D-Fabrix
resembles a checkerboard, with each ALU occupying a
square surrounded by the switchboxes of datapaths con-
necting it to surrounding ALUs. Each ALU has three four-
bit registers and 36 four-bit buses (18 buses in each perpen-
dicular direction) connected to the switchboxes. The
smallest possible array is a 2x2 matrix of tiles, which con-
tains eight ALUs and eight switchboxes. In practice, a pair of
these arrays is tightly coupled to 256 bytes of locally shared
SRAM over an eight-bit-wide data bus. This yields a basic
array unit, or repeating block, of two arrays plus local mem-
ory, with a total of 16 ALUs. Using the Array Generator tool,
SoC designers can combine as many repeating blocks as
necessary for the application.

The on-chip controller for the D-Fabrix network is
Toshiba’s Media Embedded Processor (MeP), a synthesizable
32-bit RISC core with a VLIW coprocessor. (See MPR
6/10/02-02, “New Processors for New Media.”) The con-
troller sits outside the fabric but is tightly coupled to it by a
32-bit interface. Around the periphery of the fabric is more
local memory, arranged in dual banks. SoC designers can

. ol) AR T
abrix A& && ¢ Switchboard A& &&
o A | ol A
A&A Q& R\ Buses A&A ®®®
A X@ e X@ X@
A A o d] SR A A A A
/RN /RN AR DR /RN /RN /RN R\

Basic Repeating Block

Figure 1. A basic repeating block in the D-Fabrix architecture has a pair of tile arrays surrounding 256 bytes of SRAM, with each array containing
eight ALUs and eight interconnecting switchboxes. Any ALU in an array block can access the shared local memory or can exchange data with other
ALUs in a single clock cycle.

© IN-STAT/MDR <

JULY 21, 2003 <

MICROPROCESSOR REPORT

implement different amounts of memory to suit their appli-
cation (the Toshiba ET1 has 108KB). An application can use
this memory as an I/O bulffer, as temporary local data storage,
or to store program code for the arrays. As Figure 2 shows, an
internal bus connects all these elements—the D-Fabrix, the
RISC controller, and the dual-banked memories—to a DMA
controller and memory interface.

Using the dual-banked memories for I/O buffers or
temporary data storage is the same as using local memory for
those purposes on other SoCs. Using the memories as what
Elixent calls a “reconfiguration buffer” is a distinguishing fea-
ture of the D-Fabrix. In theory, reprogramming the arrays
might never be necessary if an SoC designer made the fabric
large enough to execute all the tasks required for the applica-
tion without reprogramming. However, that would inflate
the fabric’s size and negate the main advantage of using a pro-
grammable processor in the first place.

To make the most of the architecture’s capabilities,
designers should scale the fabric to meet the peak perform-
ance requirement of their application (and leave some head-
room for the future), not necessarily the maximum size
requirement. Ideally, the fabric should be large enough to
perform the application’s most demanding data-processing
task in the required amount of time, but should also be too
small to handle the whole application without reprogram-
ming itself at run time. Such a configuration will minimize
the number of redundant ALUs in the fabric.

Reprogramming the arrays at run time allows a down-
sized processor to tackle larger jobs by dividing the work
into multiple phases—as long as the time required to repro-
gram the processor for each phase doesn’t prevent it from
meeting the application’s performance target. It’s the same
principle as hiring temporary contract labor for
different phases of a design project instead of
employing a team of full-time engineers large
enough to carry out the entire project. The
more-flexible design team can expand, contract,

Elixent Expands SoCs 3

The reprogramming speed varies according to where
the application stores the configuration code. For the fastest
access, code can reside in the dual-banked SRAMs surround-
ing the fabric, visible in Figure 2. Accessing this memory is
almost as fast as accessing the local memory in each block,
because it doesn’t consume any bus bandwidth; all transac-
tions flow through the fabric. Alternatively, the configuration
code can be stored in off-chip system DRAM. Accessing this
memory requires a bus transaction, so it’s the slowest place to
store the code, but it has the largest capacity—perhaps
megabytes.

Deciding where to store the configuration code depends
on the SoC designer’s objectives, and all the code need not
reside in the same place. One goal might be to design an SoC
that, unlike a hard-wired ASIC, is suitable for several different
applications or a line of related products; in that case, pro-
grammability at run time isn’t a factor. Storing all the config-
uration code in off-chip memory and loading it during boot-
up would be fast enough. Another goal might be to replace
multiple ASICs in a system with a single SoC that the appli-
cation reprograms at run time to handle different tasks; in
that case, reprogramming must be fast enough to keep up
with user input or data I/O. At least some of the configuration
code would have to remain in the dual-banked memories
tightly coupled to the fabric.

Obviously, the answer depends greatly on the applica-
tion. Elixent says a D-Fabrix can be reprogrammed fast
enough to handle the number-crunching tasks typically
encountered in digital cameras (JPEG compression), digital
video products (MPEG encoding/decoding), and cellular
telephony (3G and GSM baseband processing). In general,
these tasks might require the D-Fabrix to reprogram its

and adapt its breadth of expertise to match
changing demands.

Juggling the Trade-Offs of Reprogramming
Meeting an application’s peak performance tar-
get while keeping the fabric as small as possible
requires careful analysis by SoC designers. First,
they have to divide the application into tasks the
processor can perform in parallel and those it
can perform sequentially. Parallel tasks require a
larger fabric with more arrays of ALUs; sequen-

Dual-Banked -
Local Memories 8K| 8K 8K| 8K 8K 8K
8
R Toshiba ET1 } 2K
9 D-Fabri
Toshiba MeP = abrix Array 2K
RISC Controller & 32b
[a} 24 x 24 tiles 2K
=1,152 ALUs 2K
Local Bus Interface +72 SRAMs

DMA Controller
< 1 1 1

8K || 8K 8K|| 8K 8K||8K

tial tasks might be able to reuse the same ALUs
by reprogramming them between steps. Next,
the designers must determine whether the pro-
cessor can reprogram itself quickly enough at
run time to carry out some sequential tasks in
the same ALUs without missing the application’s
performance target.

Memory Interface

processing and local-memory components of the D-Fabrix architecture. SoC developers
can license this architecture as a hard macro, scale the number of arrays in the fabric to
fit their applications, and integrate any additional components they wish, such as more
on-chip memory and application-specific peripherals.

© IN-STAT/MDR &

JULY 21, 2003 < MICROPROCESSOR REPORT

4 Elixent Expands SoCs

arrays in time frames ranging from 40 milliseconds (4 million
clock cycles at 100MHz) to 10 microseconds (1,000 clock
cycles at 100MHz)—well within the processor’s capabilities.
Another trade-off designers have to make is determin-
ing how much tightly coupled memory to use for configu-
ration code and how much to reserve for data. Using more
memory for code speeds up reprogramming at the expense
of data throughput, and vice versa. In one implementation
of an MPEG encoder, Elixent found that the amount of exe-
cution time the fabric spent reprogram-
ming itself varied from about 1% to 55%,
depending on where the code was stored.
Elixent determined that the best balance
was to share the tightly coupled configura-
tion buffers between the code and the data
in proportions that reduced the reprogram-
ming overhead to 5% of the execution time.

Evaluating Performance

Elixent has no formal benchmark results
for a D-Fabrix processor. So far, the only sil-
icon implementations are test chips;
Toshiba expects to receive the first silicon

color interpolation—estimating the RGB color of an image
pixel by sampling the colors of nearby pixels. (Color interpo-
lation is necessary because conventional CCD and CMOS
image sensors record only one of the three RGB color compo-
nents per pixel; only the Foveon X3 is a true three-component
RGB sensor.)

To interpolate the two missing color components for
a pixel, the DSP must execute 20 instructions: eight loads,
eight adds, two shifts, and two stores. For this comparison,
Elixent configured a D-Fabrix with 1,024
ALUs, although it needs only 24 ALUs to
perform two color interpolations in paral-
lel. (The remaining ALUs would be avail-
able for other tasks.) Elixent also added the
latency of configuring all 1,024 ALUs at
run time—assuming they weren’t already
programmed—but it was an insignificant
amount of the total execution time
(0.05%). Table 1 shows the results of this
comparison.

Using only 24 of its 1,024 ALUs, or
2.4% of the fabric’s capacity, this hypotheti-
cal D-Fabrix processor easily outruns a DSP

ROSS MEHAN

for its ET1 soon. Elixent says the test chips

that must dedicate all its resources to the

are fully functional, but neither those chips Alan Marshall, CTO of Elixentanda same task. Of course, Elixent contrived this
nor the RTL models have been subjected to ~ 15-year veteran of HP Labs, example to demonstrate the architecture’s
EEMBC or any other industry-standard describes the D-Fabrix architecture yperiority for algorithms with a great deal

benchmark testing. at EPF2003.

of exploitable parallelism. And in practice, a

One problem is that EEMBC requires
vendors to run the “out-of-the-box” (standard) benchmarks
without modifying the C source code, which a D-Fabrix
processor cannot do; the array processors require special
programming. However, Elixent could run the EEMBC
benchmarks under the “full-fury” or optimized rules, which
allow the vendor to modify the benchmark code. Elixent is
negotiating this issue with EEMBC. (See MPR 6/21/99-01,
“Embedded Benchmarks Grow Up.”)

Elixent has conducted some informal tests with the
types of algorithms that customers are likely to run on a D-
Fabrix processor. In one example, Elixent compared the sim-
ulated performance of a 100MHz D-Fabrix processor with
that of a 100MHz DSP when both were running a common
algorithm for a digital camera. The algorithm performs RGB

Task D-Fabrix DSP
Execute Time Execute Time

(2 Megapixels RGB)

Array Programming 0.01ms =

Interpolate R Color 20ms 400ms
Interpolate G Color 20ms 400ms
TOTAL 20ms 800ms

Table 1. The D-Fabrix processor could interpolate the missing red
and green color components for two million RGB pixels in paral-
lel, so the total elapsed time is the same as for interpolating each
color component separately. It could finish the job 40 times faster
than a DSP running at the same clock frequency (100MHz).

properly programmed DSP could hide some
of the load latencies and achieve other efficiencies. Still, the
general point is that the D-Fabrix architecture is very good
for data-intensive code that can execute in parallel.
Conversely, an SoC designer could implement a smaller
D-Fabrix configuration that delivers the same performance
as a DSP while consuming less power. To illustrate this, Elix-
ent compares JPEG still-image compression on the D-Fabrix
with a Texas Instruments TMS320C54x DSP. According to
TT’s data, the ’C54x can compress 2.58 megapixels per second
while consuming 90mW. At the same power level, a D-Fabrix
processor could compress the image almost 20 times faster
(51 megapixels/sec). At the same performance level, the D-
Fabrix could compress the image while consuming only
1/20th as much power (4.55mW).

The Catch: Software Development

The biggest advantages of the D-Fabrix accrue from its mas-
sive parallelism and run-time programmability (Elixent’s
“reconfigurability”). Consider the previous example of using
a D-Fabrix processor instead of a fixed-function ASIC in a
digital camera. Simply by reprogramming the array, the cam-
era manufacturer could adapt the chip for the wavelets of
JPEG 2000 instead of the discrete cosine transforms (DCT) of
regular JPEG encoding. That might allow the manufacturer
to reuse the same SoC in multiple cameras, saving the con-
siderable cost of another ASIC project.

© IN-STAT/MDR <

JULY 21, 2003 <

MICROPROCESSOR REPORT

Of course, general-purpose processors are reprogram-
mable, too. The camera manufacturer could just as easily
replace the ASIC with an SoC built around a RISC core li-
censed from ARC, ARM, MIPS, Sun, Tensilica, or another ven-
dor. It needn’t take any longer or cost any more money for the
manufacturer to spin the silicon with a RISC core than with
Elixent’s core, and the RISC-based SoC would be easier to pro-
gram. General-purpose RISC architectures are well under-
stood and have lots of mature software-development tools.

In contrast, the D-Fabrix isn’t programmable with an
everyday C compiler or assembler. To write the configura-
tion code, programmers must use the hardware-description
languages Verilog or VHDL, or a special version of C
adapted for hardware design (Celoxica’s Handel-C), or a
special data-visualization and algorithm-development tool
(MathWorks’ Matlab). Not that those languages are inferior
to plain-vanilla C; they’re just different.

If critical parts of the application code already exist in
Verilog or VHDL—possibly because an earlier implementa-
tion of the product used ASICs—the transition will be eas-
ier. Otherwise, before software development can begin, pro-
grammers must work closely with the SoC designers to
determine how to partition the application into tasks that
can execute in parallel or sequentially; estimate how large
the fabric should be; decide how to distribute the applica-
tion among the array processors; and allocate the closely
coupled memories between configuration code and applica-
tion data. Some of this analysis is unique to array architec-
tures like the D-Fabrix, so it requires uncommon expertise.
It also requires a degree of cooperation between the hard-
ware and software engineers that will be new to some devel-
opment teams.

To put it bluntly, expect a steeper learning curve for
both the hardware and software flows of a project when

Elixent Expands SoCs 5

Price & Availability

The D-Fabrix hard macro is available now for 0.13- or
0.18-micron CMOS processes at popular foundries, includ-
ing Chartered, TSMC, and UMC. Elixent hasn't disclosed
licensing fees. For more information, see www.elixent.com.

adopting an unconventional architecture like the D-Fabrix.
The potential payoff is higher performance and lower power
consumption than would be possible with a DSP or an SoC
built around a general-purpose RISC core. This is almost cer-
tainly achievable in data-intensive applications, which lend
themselves to the nearly unlimited parallelism of a scalable
array processor. Indeed, the D-Fabrix is capable of more par-
allelism than most applications can expose. This is not true of
the general-purpose RISC cores available for SoC integration.
Almost all licensable RISC cores are simple uniscalar-pipeline
designs, although several of them have SIMD, VLIW, or DSP
extensions that can exploit some data parallelism.

At the other end of the spectrum, a custom ASIC should
have little trouble outperforming a D-Fabrix or RISC-based
SoC if flexibility isn’t an issue. Well-designed ASICs can
exploit parallelism, too, and their hard-wired functions don’t
need reprogramming and aren’t burdened with instruction
fetching. An ASIC should easily be able to outrun a D-Fabrix
SoC, whose complex architecture severely limits its maxi-
mum clock frequency.

In other words, it’s the old programmability-vs.-
performance debate that stretches as far back as the 1940s.
The D-Fabrix architecture’s highly parallel local-execution
model, with an array of independently programmed pro-
cessing units, offers an interesting middle ground. <

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

© IN-STAT/MDR &

JULY 21, 2003 < MICROPROCESSOR REPORT

