
© I N - S T A T / M D R A U G U S T 2 5 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

systems easier, ARM is adding new security extensions to
the ARMv6 architecture.

The new TrustZone extensions are relatively simple,
consisting primarily of one new instruction, a new configu-
ration bit, and an additional permission level that supple-
ments the existing user and privileged modes. TrustZone is
simple because ARM’s objectives are limited. Instead of try-
ing to make the entire system an impregnable fortress—a
goal ARM considers unrealistic—TrustZone allows small
amounts of security-critical code to run as a monitored
process alongside the real-time operating system (RTOS)
and application software. The secure context might be
entrusted to handle encryption, decryption, authentication,
certificate management, and other small but vital tasks.

ARM’s target applications are smartphones, handheld
computers, and any embedded system likely to suffer from
the malicious hackers who are expanding their attention
beyond PCs. Wireless networking and field-upgradable
software are opening new doors for intrusions, yet the typ-
ical embedded system has fewer system resources to spare
for security measures than a PC has.

For now, at least, ARM isn’t promoting TrustZone for
smartcards, nor has ARM perceived much interest in Trust-
Zone from smartcard vendors. TrustZone will initially
appear in ARM cores too large for the cards, so at this point
it’s not directly competitive with the SmartMIPS core from
MIPS Technologies. (See MPR 10/1/01-02, “SmartMIPS for
Smart Cards.”)

Although ARM says TrustZone’s architectural definition
is final, the company continues to work with key customers,
universities, and consultants to search for vulnerabilities and
nail down the last details. ARM plans to implement the exten-
sions in a new version of the ARM11 core, to be announced
later this year. The first silicon implementations could appear
by late 2004, followed by products in 2005. Going forward,
TrustZone will be a standard feature of the ARMv6 architec-
ture and future ARM cores.

Secure to the Core
A key feature of TrustZone is that the extensions are hard
wired into the microprocessor core, not implemented in
firmware or software. That should provide an extra degree
of security over a software-only approach. Operating sys-
tems are easily compromised or corrupted—even when
they are designed to be secure, which most are not. If noth-
ing else, the sheer volume of code in a modern operating
system makes bulletproof verification and security almost
impossible. In addition, any security solution requiring
third-party vendors to rewrite their operating systems
would almost certainly be doomed to failure. A better
approach is to chisel the basic security features into the
processor’s logic and minimize the amount of software that
needs to be secure. The fewer doors and windows there are,
the fewer the opportunities for break-ins.

However, implementing security in the microprocessor
also has disadvantages: it’s less flexible than a pure software

ARM DONS ARMOR
TrustZone Security Extensions Strengthen ARMv6 Architecture

By Tom R. Halfhi l l {8/25/03-01}

“Trusted computing” is such a hot topic that a dictionary editor recently asked MPR if she

should include the term in the next edition she’s compiling. Nothing validates a trend like

the migration of technobabble to everyday language. To make designing secure embedded

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

solution and it inflates the size of the core. For both reasons,
ARM is trying to keep TrustZone as bare bones as possible.
ARM estimates TrustZone will require about 15K–20K gates
and will increase the area of a basic ARM11 core by about 5%.
That’s acceptable for applications that need the security fea-
tures. For applications that don’t need security, ARM will
probably continue to offer ARM11 cores without TrustZone
for the near future.

In essence, TrustZone works by adding a special per-
mission domain that supplements the existing user and
privileged modes. Although it’s more privileged than the
privileged mode in which the RTOS runs (which itself is
more privileged than the user mode in which applications
run), it’s not an exclusive operating mode. Both privileged
code and user code can run in TrustZone’s secure mode. In
this sense, the permission levels of ARMv6 differ from the
successive “rings” of privileges familiar to x86 programmers.
ARM describes the TrustZone security level as a parallel
permission domain, not as new layer in a stack of domains.

To enter TrustZone, the RTOS must invoke the single
new TrustZone instruction: secure monitor interrupt (SMI).
Only an RTOS running in privileged mode can invoke SMI.
Right away, this restriction eliminates many opportunities
for mischief, because the processor generates an undefined
opcode exception if an application running in user mode
tries to execute SMI directly. Instead, the application must
request permission to enter TrustZone by calling an API rou-
tine in the RTOS. The API call gives the RTOS a chance to
perform any checks it deems necessary to ensure the appli-
cation isn’t up to something dodgy. However, the degree of
security provided at this juncture is entirely voluntary on the
part of the RTOS vendor—minimally, all the RTOS must do
is provide a vector to the SMI instruction.

A Bit of Security
When the SMI instruction executes, it switches the proces-
sor into the TrustZone domain, also known as secure mon-
itor mode. To make the switch, SMI sets a new security bit,
called the S-bit, in a coprocessor 15 (CP15) secure status
register, which is part of the core’s memory system. The
CP15 registers are familiar to ARM programmers; they con-
tain configuration bits for several core functions.

The secure monitor is a small, self-contained, non-
reentrant program that is completely independent from the
regular RTOS, the secure operating-system kernel, and the
secure device drivers that also are required. It is responsible for
switching contexts between secure and nonsecure states. ARM
will provide reference code for the secure monitor, but it is still
determining how to deliver the secure kernel and drivers.

The responsibilities of the secure kernel will depend
on the application. At minimum, it must be capable of man-
aging memory securely, but it should duplicate as few func-
tions of the RTOS as possible. Keeping the monitor and
secure kernel small will conserve system resources and make
it easier for developers to formally prove the system’s

integrity. ARM envisions a monitor and secure kernel re-
quiring tens of kilobytes—not hundreds.

As long as the TrustZone S-bit remains set, the secure
monitor will oversee all operations on the processor. Its first
job is to preserve the state of the currently running nonsecure
process before switching contexts to the new secure process.
The monitor will save the contents of the nonsecure process’s
registers, most likely in tightly coupled memory (TCM), the
on-chip scratchpad RAM that’s an optional feature of the
ARM11. (See MPR 6/3/02-01, “ARM Family Expands at
EPF.”) The monitor will also save the nonsecure process’s
configuration settings in an extra bank of CP15 registers. In
all, TrustZone adds 350 bits of state information to the
processor and requires about 200 clock cycles to switch con-
texts, although context switching can be faster if the secure
state uses only a subset of the processor’s registers.

Note that because it is the monitor’s responsibility to
save and restore states when switching between secure and
nonsecure contexts, there is no need to add any context-
switching code to the RTOS. The RTOS continues to handle
context switches for nonsecure processes only.

The secure monitor doesn’t necessarily have to flush the
instruction cache, data cache, TCM, or any other memory
when switching contexts, because TrustZone divides those
structures into secure and nonsecure partitions. The caches,
memory-management unit (MMU), and translation look-
aside buffer (TLB) have additional tag bits—S-bit tags—to
keep track of those partitions. Only a secure process can
access a secure memory partition or cache line. Any attempt
by a nonsecure process to access the restricted cache lines or
memory will generate a cache miss and/or external abort, as
if the program had tried to access nonexistent memory.

Although secure partitioning makes parts of the caches
off-limits to nonsecure processes, the secure cache lines aren’t
actually locked (unless the programmer explicitly locks
them). New data from a secure or nonsecure process can evict
old data from the secure cache lines as part of the cache’s nor-
mal behavior.

Scratchpad memory isn’t organized into lines like a
cache, so a system that uses TrustZone must dedicate separate
TCMs for secure and nonsecure data. The ARMv6 architec-
ture allows up to four TCMs, and developers can partition a
single physical block of on-chip SRAM into multiple logical
TCMs. Partitions can vary in size at run time, though it may
be undesirable for one process to dynamically allocate
resources that another process may need. ARM expects the
secure monitor and its scratchpad memory to reside in a
secure TCM—partly for its own protection, and partly so the
monitor’s response latencies are predictable.

By maintaining separate partitions in caches and
memory, and by strictly enforcing access privileges for those
partitions, TrustZone can eliminate a back door commonly
exploited by malicious programs. An untrusted program
shouldn’t be able to substitute its own instructions or data
to seize control of the system or corrupt the output.

© I N - S T A T / M D R A U G U S T 2 5 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

ARM Dons Armor

3

Don’t Interrupt Me
Another challenge for TrustZone is handling interrupts that
may originate from a hostile program. The interrupt could be
a ruse for diverting execution to a counterfeit interrupt han-
dler that subverts the secure process it preempted. One solu-
tion is to simply block all interrupts while the processor runs
in secure mode. Although that might work in a system that
doesn’t perform time-consuming secure tasks and needn’t
respond to real-time events, it’s unacceptable in a hard real-
time system.

ARM thinks most systems will need separate interrupt
vector tables for their secure and nonsecure modes, with dif-
ferent interrupt policies for each mode. The secure vector
table would reside in secure memory and might point to inter-
rupt handlers that are likewise secure. The nonsecure vector
table and handlers would reside in regular memory. Although
this solution might duplicate a few handlers and impose some
redundancy on the system, it would prevent a malicious pro-
gram from overwriting the secure vector tables and handlers.
An alternative would be to extend security to all the interrupt
handlers, but that would require the system to switch into
secure mode to handle any interrupt—good for security, but
perhaps not so good for interrupt-response latencies.

Even some interrupts that don’t seem to need security
could benefit from TrustZone. For example, many embedded
systems use interrupts to regularly reset a watchdog timer on
chip. Without a reset, the timer eventually counts down to
zero and triggers a system reboot, which allows the system to
automatically recover from a problem that freezes the soft-
ware. A hostile program could mask the timer interrupt and
force the system to reboot over and over again—either as a
denial-of-service attack or to open a door for installing a cor-
rupt device driver, application, or even a whole new RTOS.
Conversely, a hostile program could paralyze the system with-
out disabling the timer interrupt, thereby preventing a reboot
and recovery.

To deflect those kinds of attacks, TrustZone can stop
the system from masking the highest-
priority interrupts while running nonse-
cure code. The ARMv6 architecture sup-
ports two kinds of interrupts: the regular
IRQs and the higher-priority fast inter-
rupts (FIQ). IRQs always jump to a
branch instruction in the interrupt-
vector table, causing a branch delay
when they call the interrupt handler.
The FIQ vector is always the last entry
in the vector table, which is actually the
entry point for the handler, eliminating
the need for a branch. Because FIQs
enjoy a higher priority than IRQs, it’s
more important to make them unmask-
able by nonsecure processes. Secure
processes can use the FIQs. With Trust-
Zone, an FIQ can force the system to

switch into secure mode, from which the monitor can jump
into a protected vector table and interrupt handler.

When the processor finishes a secure task—whether
it’s an interrupt-service routine or part of an application—
the TrustZone monitor executes the SMI instruction again
to clear the S-bit in the CP15 status register. The monitor
also restores all other registers to the state of their previous
context and switches the processor back into nonsecure
mode. All instructions and data stored in secure partitions
of the caches, TCMs, and memory remain undisturbed.

TrustZone can also ward off attacks that exploit a
spontaneous reboot or infect the system with “sleeper cell”
code that waits until the next regular startup. Developers
can configure the system to initialize in a secure privileged
mode and check for intrusions before loading the RTOS. By
authenticating each code module and device driver during
the bootstrap process, the system can ensure that it awakens
in a secure state.

Armor for One and Armor for All
TrustZone wouldn’t be nearly as effective if other parts of the
system were left vulnerable, so it can extend protection to off-
chip memory and peripherals. The same S-bit tags in the
MMU and TLB that restrict access to protected partitions of
the TCMs can also fence off regions of off-chip RAM, ROM,
and flash memory. Likewise, developers can configure periph-
erals to check the S-bit before performing security-critical
operations. The S-bit appears on the AMBA bus that connects
on-chip peripherals, DMA controllers, I/O interfaces, co-
processors, and logic blocks to the processor core. Minor
modifications to those devices will ensure that the state of the
S-bit determines permission for all transactions. Figure 1
shows how TrustZone can provide systemwide security.

Virtually any component of an embedded system—
hardware or software—can take advantage of TrustZone in
some fashion, because the extensions are an inherent part of
the ARMv6 architecture. No other licensable general-purpose

© I N - S T A T / M D R A U G U S T 2 5 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

ARM Dons Armor

Figure 1. An embedded system can use TrustZone to extend security throughout an ARM-based
system-on-chip (SoC) and to portions of off-chip memory. Note that timers, real-time clocks,
codecs, and other devices and logic blocks can be modified to check the state of the S-bit before
performing security-critical functions. To close another potential back door, chip designers can dis-
able the debug features for secure parts of the chip after development.

Secure Normal Shared

SDRAM Boot
ROM

AMBA Bus

Sys Ctl

Sim I/F
UARTTimers

GPIO

RTC

Sec Ctl
Timers
RTC

SDRAM
Controller

Interrupt
Secure

Interrupt
Normal

LCD
Control

ETB

ETM

ARMv6
Core TCM

Caches

Key
Storage

On-chip
SRAM

Flash

ROM
Decoder

I/F

AHB
Decoder

4

microprocessor core offers similar protection at the architec-
tural level.

However, it is possible to add similar extensions to the
configurable microprocessor cores licensed by ARC Interna-
tional, MIPS Technologies, and Tensilica, or even to add cus-
tom extensions that go well beyond TrustZone. For instance,
ARC has instruction extensions for the ARCtangent-A5
processor that accelerate any protocols using DES or 3DES
encryption, such as IPSec (Internet Protocol Security), SSL
(Secure Sockets Layer), TLS (Transport Layer Security), and
encrypted PPP (Point-to-Point Protocol). In addition, ARC
recently announced two new security packages, IPShield and
ARCprotect. IPShield adds IPSec to ARC’s licensable TCP/IP
stack for ARCtangent-A5, ARM, MIPS, ColdFire, and Power-
PC processors. ARCprotect uses the DES extension and
about half a dozen other custom instructions to accelerate
IPShield on the ARCtangent-A5.

Usually, custom extensions are unique to the licensee
that designs them, not broadly available to all licensees as part
of the core architecture. For security extensions, that’s both
an advantage and a disadvantage. On the plus side, custom
extensions can be even more secure than ARM’s TrustZone if
the designer is secretive. Hacking a custom instruction is
almost impossible, because its functions are hidden in hard-
wired logic. Disassembling the software reveals nothing but
an opcode—and an officially undefined opcode at that. The
disadvantage of implementing security with custom exten-
sions is that it shifts more design work to licensees and makes
supporting the extensions with third-party tools and software
more difficult. One way around this disadvantage is for the

configurable-microprocessor vendor to develop and license
the extensions to customers. For example, ARC’s DES exten-
sions are not part of the ARCtangent architecture, but ARC
makes them available to all ARCtangent-A5 licensees.

Security extensions like TrustZone that don’t accelerate
specific algorithms or protocols may cost some perform-
ance. Every subroutine, interrupt handler, memory access,
and device I/O transaction that needs to remain secure must
either trigger a switch into secure monitor mode or check
the S-bit to verify that the processor is still running in secure
mode. If security is carried to the extreme, the overhead will
also be extreme. Developers should carefully evaluate which
parts of their system truly need this level of security.

Another reason not to go overboard with TrustZone is
the challenge of verifying the system’s security, which scales
at least as rapidly as the size and complexity of the code.
Theoretically, the entire RTOS, and even the application
software, could execute in TrustZone’s secure mode. How-
ever, finding and closing all the potential loopholes in such
a design would be almost impossible. ARM is encouraging
designers to shield only their most important code.

A system that uses TrustZone may need more on-chip
memory for the secure monitor, the secure kernel, and the
state information saved during a security switch. In addition
to the 15K–20K gates of logic required for the TrustZone
extensions, the extra memory will make the chip a little larger
and consume more power. It’s too early to measure the total
effects on die area and power, but we estimate the inflation will
be less than 10%—a relatively small price to pay for a secure
system. Any other security technology implemented at a
higher level than the processor architecture would probably
require even more memory, consume more energy (for the
additional processing), and be less effective.

Of course, no system can be completely impervious to
attack, and ARM is careful to avoid making any such guaran-
tees. TrustZone isn’t really a security system; it’s an architec-
ture extension that makes it easier for developers to build their
own security system. By itself, TrustZone does nothing. Many
ARM developers will ignore it altogether. For those who need
to design secure embedded systems—a growing percentage of
developers—TrustZone provides the basic foundation that
higher-level software solutions cannot duplicate.

© I N - S T A T / M D R A U G U S T 2 5 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

ARM Dons Armor

P r i c e & Av a i l a b i l i t y

ARM is currently adding TrustZone to a new version of
the ARM11 core to be announced later this year. ARM
expects the first silicon implementations to appear in
late 2004 and the first products in 2005. The company
has not announced the way TrustZone will affect its
licensing fees and royalties. For more information, see
www.arm.com/armtech/TrustZone.

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

