
© I N - S T A T / M D R N O V E M B E R 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

for floating-point performance. If you need more perform-
ance than integrated FPUs can deliver, the only alternatives
are multiprocessor servers or supercomputers, custom logic
in ASICs or FPGAs, or a few relatively unknown and exotic
CPU architectures.

ClearSpeed fits the last category. In the Extreme Proces-
sors session at Microprocessor Forum 2003, the U.K.-based
startup revealed a new massively parallel CPU architecture
intended to revive the market for floating-point coproces-
sors. ClearSpeed’s strategy is to offer much higher floating-
point performance at much lower power levels than general-
purpose CPUs do, enabling designers to build faster
embedded systems and accelerator cards for PCs, worksta-
tions, and servers. Instead of bottom-trawling for the mass
market, though, ClearSpeed is fishing for customers willing
to spend $975 per chip for 25.6 billion floating-point opera-
tions per second (GFLOPS).

In price and floating-point performance, ClearSpeed’s
new CS301 chip appears to compete against Intel’s Itanium-2,
IBM’s Power4, Sun’s UltraSparc III, and high-end x86 proces-
sors from AMD and Intel. The CS301 is a coprocessor, how-
ever, not a standalone CPU, and it’s far more suitable for
embedded systems than any of the aforementioned chips,
thanks to miserly power consumption in the 1.8–2.5W range.
Nobody can beat 10 GFLOPS per watt.

Target applications include general scientific comput-
ing, medical imaging, genetic engineering, nanotechnology
research, signal processing, simulation, financial modeling,

weather forecasting, and defense-related image recognition.
Indeed, ClearSpeed is the first company to pitch a processor
to MPR by singling out applications like genome mapping,

FLOATING POINT BUOYS CLEARSPEED
Massively Parallel Processor Delivers 25.6 Peak GFLOPS at 200MHz

By Tom R. Halfhi l l {11/17/03-01}

Once upon a time, there was a thriving market for floating-point math coprocessors—until

Intel’s 486 and other general-purpose processors integrated the FPU on chip, eventually sink-

ing coprocessor companies like Weitek. Since then, the major CPU vendors have set the pace

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

Figure 1. ClearSpeed CS301 die photo. The 64 parallel processing ele-
ments and their buses fill up most of the chip. At the upper right, notice
the large function unit, which ClearSpeed calls the mono execution unit;
it controls the processing elements. Global SRAM is at the upper left.

Bus

SRAM Control

PE Array

2

protein folding, drug discovery, climate analysis, and terrain
recognition for guided weapons. The CS301 is small enough
and cool enough to fit on a PCI plug-in card or even a PC
Card, so it can boost the floating-point performance of vir-
tually any kind of system.

ClearSpeed’s Simon McIntosh-Smith, director of archi-
tecture, was showing off the first-pass silicon of the CS301 at
Microprocessor Forum. Since then, ClearSpeed has deter-
mined that the first chips are working perfectly and will be
qualified as production silicon. Production could begin as
early as 1Q04, depending on demand.

IBM Microelectronics will manufacture the chip for the
fabless semiconductor company, using a 0.13-micron eight-
layer-metal copper CMOS process. Initial samples are hitting
the target clock frequency of 200MHz at 1.2V, with 2.5V I/O
(3.3V-tolerant). Power consumption is about 1.8W typical,
2.5W worst-case.

The die, shown in Figure 1, measures 72mm2, contains
41 million transistors (32% logic, 68% memory), and is pack-
aged in an 852-pin plastic BGA. Only 343 pins carry signals,
because ClearSpeed adapted the package from a previous
design. The company intends to shrink the package in a future
revision. Except for the redundant pin count, the CS301’s sta-
tistics are impressive for a massively parallel extreme proces-
sor based on a standard-cell, fully synthesized design.

Inside the Hive Mind
To squeeze 25.6 GFLOPS or 12,800 native mips out of a chip
running at only 200MHz, ClearSpeed created a massively par-
allel architecture with 64 processing elements (including 128
FPUs); a high-speed on-chip bus that connects all the ele-
ments together; 384KB of local memory; hardware-controlled
multithreading; and a few other interesting features.

At first glance, ClearSpeed’s Multithreaded Array Pro-
cessor (MTAP) architecture resembles two other extreme
architectures recently announced by U.K. companies: the
picoArray from PicoChip (see MPR 10/14/03-03, “Pico-
Chip Makes a Big MAC,” and MPR 7/28/03-02, “PicoChip
Preaches Parallelism”) and the D-Fabrix from Elixent (see
MPR 7/21/03-01, “Elixent Expands SoCs”). All are massively
parallel array architectures with dozens or hundreds of pro-
cessing elements, each with its own local memory resources
to reduce the need for off-chip I/O. Although the overall
design of these chips is complex, their individual processing
elements are fairly simple, so they don’t follow the classic
“Brainiac” philosophy of achieving high performance with
intricate pipelines and complex control logic. Nor do they
belong to the opposite class of “speed demons”—at only
200MHz, ClearSpeed’s CS301 has the highest clock rate in
this group.

Instead, these massively parallel processors more closely
resemble a colony of bees with a large number of workers
whose efforts for the common good are loosely coordinated
by a central intelligence. For that reason, we have coined the
term “hive mind” to describe these designs.

Despite the broad similarities to other hive-mind pro-
cessors, ClearSpeed’s MTAP architecture has some distin-
guishing characteristics, primarily that the processing ele-
ments are homogeneous. That attribute sets it apart from the
picoArray and other parallel architectures that use different
types of processing elements for different kinds of tasks.

In the CS301, each of the 64 identical processing ele-
ments has a 32-bit ALU; two 32-bit FPUs (a multiplier and
an adder, with an associated division/square-root unit); a
16-bit multiply-accumulate (MAC) unit; and a load/store
unit with 64-bit interfaces. All five arithmetic units can oper-
ate on every clock cycle. If every arithmetic unit in every pro-
cessing element fired at once—an unlikely but entertaining
scenario—the CS301’s peak performance at 200MHz would
exceed 100 billion native operations per second (GOPS). The
FPUs can perform a 32-bit IEEE-754 floating-point multiply
or add in four cycles, with single-cycle throughput. The
processor also supports 8-, 16-, 24-, and 32-bit fixed-point
arithmetic.

Unlike the function units in conventional processors—
which usually share a common register file with other func-
tion units—each processing element in the CS301 has its
own local register file, data memory, DMA, and address-
generation logic. Missing is local instruction memory,
another significant difference between the CS301 and some
other massively parallel array processors, such as PicoChip’s
PC101 and PC102. Lacking local instruction memory, the
64 processing elements in the CS301 cannot execute differ-
ent instructions at the same time. Instead, they act in con-
cert as a very wide parallel processor that runs the same set
of instructions against different parts of a data set. Clear-
Speed refers to the 64 processing elements collectively as a
“poly processor.”

In keeping with the many data types this processor sup-
ports, the register file is uncommonly flexible. It can store 64
bytes and is byte addressable, so it’s not limited to a specified
number of register slots with fixed widths. Byte-size or larger
operands can start at any boundary. The register file has two
32-bit read ports and one 32-bit write port for the processing
element’s function units, plus two 32-bit I/O ports for sharing
registers with adjacent processing elements. Figure 2 is a block
diagram of a single CS301 processing element.

To minimize off-chip I/O, each processing element has
4KB of SRAM for data. This allows a program to store a
chunk of data in local memory while performing a series of
operations. When I/O is necessary, each processing element
has a load/store unit for programmed I/O or streaming I/O,
each having its own pair of 64-bit interfaces to the I/O bus.
The I/O units have independent DMA, so they can transfer
data simultaneously.

Programmed I/O, in ClearSpeed nomenclature, means
traditional load/store operations, with a few enhancements to
take advantage of parallel processing. If two or more process-
ing elements need data from the same address at the same
time, the CS301 consolidates the requests, sends only one

© I N - S T A T / M D R N O V E M B E R 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Floating Point Buoys ClearSpeed

3

request over the bus, and “broadcasts” the returning data to all
processing elements that need it. Programmed I/O can also
fetch data by striding through memory in hops based on a
constant offset from a base address, which is useful for fetch-
ing any data (such as video) that is striped in memory.

Streaming I/O is primarily for passing line-rate data
through the parallel processing array. It assumes the data is
arriving in a constant stream, instead of being pooled in mem-
ory at fixed addresses. The CS301 chops the datastream into
pieces and distributes the data among the processing elements,
transferring up to 128 bytes at a time to and from each ele-
ment. Larger packets can be distributed across multiple pro-
cessing elements. Different elements can receive different types
of datastreams simultaneously, and the CS301 can simultane-
ously handle both programmed I/O and streaming I/O.

The CS301’s I/O bus, called the ClearConnect bus (no
relation to IBM’s CoreConnect), is 64 bits wide and runs in
full-duplex mode at 200MHz, providing 1.6GB/s of off-chip
memory bandwidth in each direction. In addition, a pair of
800MB/s bridge ports allows system designers to daisy-chain
as many as 16 CS301 chips together, so it’s possible to build
a multiprocessor system that delivers 409.6 peak GFLOPS
and consumes only 40W, worst case, for the processors. In
fact, ClearSpeed built a 200-GFLOPS demo system with four
development boards—each with two CS301 chips—for the
Supercomputing Conference in Phoenix, Arizona, this
November.

Additional on-chip memory is available in the form of
128KB of global SRAM, which can store program instructions
or data for all 64 processing elements. In multiprocessor con-
figurations, this scratchpad memory is accessible to every
other CS301 chip in the daisy chain, appearing as just another
range of memory addresses.

Multithreading Improves I/O Efficiency
Three additional features distinguish the CS301: hardware-
controlled multithreading; an unusual instruction pipeline
that resembles the pipes of two different microprocessors
bolted together; and an instruction set that’s customizable at
run time.

Hardware multithreading has been popping up in all
kinds of places, from small packet processors like Ubicom’s
IP3023 (see MPR 4/21/03-01, “Ubicom’s New NPU Stays
Small”) to powerful PC processors like Intel’s Pentium 4 (see
MPR 12/2/02-01,“Intel’s Hyper-Threading Takes Off”). At last
month’s Microprocessor Forum, MIPS Technologies an-
nounced that some of its future embedded processors will use
the technique. (See MPR 11/10/03-01,“Multithread Technolo-
gies Disclosed at MPF,” and MPR 11/17/03-03, “Will Micro-
processors Become Simpler?”) The basic concept is to allow
the microprocessor to manage multiple contexts of execution
at the hardware level, transparently to the operating system.

ClearSpeed’s implementation of hardware multithread-
ing in the CS301 supports eight simultaneous threads—a
respectable number. (Ubicom’s more-specialized IP3023

packet processor also supports eight threads, whereas Intel’s
Hyper-Threading technology in the Pentium 4 currently sup-
ports only two threads.) ClearSpeed expects programmers to
reserve one thread for system-level operations, dedicate
another thread to compute tasks, and use one or two threads
for asynchronous I/O. Hardware multithreading allows the
processing elements in the CS301 to simultaneously fetch
data with their dual I/O units while crunching data in
another thread.

In other words, ClearSpeed uses hardware multithread-
ing primarily to allocate the CS301’s compute and I/O re-
sources more efficiently. Other multithreaded processors
tend to use a finer-grained version of hardware multithread-
ing to reduce the incidence of pipeline bubbles caused by
context switching. That version of the technology, called
simultaneous multithreading, mixes instructions from differ-
ent contexts of execution in the same pipeline at the same
time, filling in the slots created by pipeline bubbles. Bubbles
are a lesser problem in the CS301, because it’s not super-
pipelined and probably won’t switch contexts as often as a
general-purpose processor does.

Mono Execution vs. Poly Execution
To manage hardware multithreading and other internal
housekeeping chores, the front end of the CS301 pipeline con-
sists of a function unit called the mono execution unit (MEU).
It resembles a self-contained RISC processor, with its own
ALU, load/store unit, 4KB instruction cache, 4KB data cache,
and three-stage fetch-decode-issue pipeline.

Indeed, ClearSpeed refers to the MEU as the “mono
processor” that feeds the massively parallel “poly processor”
(the 64 processing elements). The mono processor’s pipeline

© I N - S T A T / M D R N O V E M B E R 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Floating Point Buoys ClearSpeed

Figure 2. Each processing element in the CS301 resembles a minia-
ture 32-bit microprocessor with its own function units, registers, local
data memory, and I/O capabilities. All 64 processing elements on the
chip are identical.

PEn

32

32

PEn-1
32 32 32

A
LU

M
A

C

D
IV

/S
Q

RT

FP
-A

D
D

FP
-M

U
L

64

64
64

64

PEn+1

Programmed I/O

Streaming I/O

Register File
64 bytes

Data Memory
4KB

32 32

4

is actually the front end of a longer pipeline through the poly
array. The mono processor locally executes scalar data oper-
ations (such as loop counters) and control-type instructions,
but it passes other types of instructions into the pipelined
function units of the processing elements. In a way, it’s the
queen bee of the hive mind. Figure 3 shows how the mono
processor fits into a high-level block diagram of the CS301.

An unusual feature of the CS301’s programming
model is that the instruction opcodes don’t distinguish
between arithmetic operations destined for execution by the
mono processor or the poly processor. Instead, program-
mers (or the C compiler) tag the operands to identify where
execution should take place. Each operand has the prefix
“m” or “p,” to specify mono or poly, followed by an integer
that specifies the operand’s size in bytes, followed by a suf-
fix that defines the operand’s data type. Here’s an example
of a poly add instruction that the CS301 will execute with its
parallel processing elements:

add 0:p4u, 4:p4u, 8:p4u;

All the values in this example are 32-bit unsigned inte-
gers, as indicated by the “4u” suffix. The first operand specifies
the destination register, and the other two operands are

sources. This unorthodox instruction format allows a single
instruction to perform an arithmetic operation using both the
mono and poly processors, as in this example:

mul 0:p4f, 4:p4f, 0:m4f;

In this case, the mono processor will hold one of the
source operands (0:m4f, a 32-bit floating-point value) in a
local register and “broadcast” it to all the processing ele-
ments in the poly array. The processing elements will mul-
tiply the mono operand by another 32-bit floating-point
value in their own registers (4:p4f). Finally, the processing
elements will store the 32-bit results in their own destina-
tion registers (0:p4f).

Despite the complexity of this architecture, Clear-
Speed makes the same claim as many other extreme-processor
vendors: it’s programmable in C, not just in assembly lan-
guage. ClearSpeed makes a strong case: a program written in
ANSI-standard C will run on the CS301 without any modi-
fications at all. The only catch is that the mono processor
will execute everything. To exploit data parallelism with the
poly processor, programmers will have to modify the C
source code.

ClearSpeed says existing C code is easy to modify, espe-
cially if it already uses the vector-processing extensions of
another instruction set, such as the x86’s SSE or the PowerPC’s
AltiVec. Mainly, it involves adding the keyword poly to the
operands. Here’s a before-and-after example of a short C sub-
routine that performs vector additions on two 64-element
arrays of 32-bit floating-point values:

/* BEFORE */

void vec_add_64_elements(float *sum, float

*a, float *b)

{

unsigned int i;

for (i=0; i<64; i++)

sum[i] = a[i] + b[i];

}

/* AFTER */

void vec_add_64_elements(poly float *sum,

poly float *a, poly float *b)

{

*sum = *a + *b;

}

When the second version of the routine is compiled,
the result will be object code that has the prefixes and suf-
fixes seen in the assembly-code examples. ClearSpeed says
the CS301 supports all features of ANSI C, including
pointer arithmetic by both the mono processor and poly
processor units.

ClearSpeed’s software-development kit runs on Win-
dows, Linux, and Solaris. It includes a C compiler, assem-
bler, visual debugger, reference source code, optimized code
libraries, instruction-set simulator, and cycle-accurate sim-
ulator. More optimized code and support is available from
ClearSpeed and its development partners.

© I N - S T A T / M D R N O V E M B E R 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Floating Point Buoys ClearSpeed

Figure 3. CS301 block diagram. At the top is the mono execution unit
or “mono processor,” a processor-within-a-processor that executes
some instructions itself and passes other instructions along to the
array of parallel processing elements, or “poly processor.”

Branch
Control

Issue

Instruction Fetch

Decode

Control/Mono Execution

Data
Cache
4KB

Instruction
Cache
4KB

Bus Port

Processing Element Array

DSP
FPU
ALU

PIO

SIO

Reg File

Load/Store

Reg File

ALU

DSP
FPU
ALU

PIO

SIO

Reg File

DSP
FPU
ALU

PIO

SIO

Reg File

SRAMSRAMSRAM

(64)

. . .

Bu
s

Po
rt

6 4

6 4

6 4

5

Instruction Set Is Customizable
The CS301’s instruction-set architecture is an alphabet soup
of RISC, CISC, VLIW, and SIMD, with a dash of FPGA
thrown in for extra flavor. It’s RISC-like in the sense that most
instructions follow a load/store model and the familiar three-
operand format (two input operands plus a destination regis-
ter). In addition, the instructions are fixed length at 32 bits.
Like CISC instructions, however, the CS301’s instructions
translate into microcode-type instructions that may require
multiple cycles to execute. This feature is what allows pro-
grammers to modify the instruction set at run time.

Microinstructions are encoded in on-chip SRAM. In
effect, it’s an instruction-set lookup table, like the microcoded
instruction sets in many CISC processors. A regular instruc-
tion acts like a pointer into the table, which issues 100-bit-long
microinstructions to the processing elements. There’s enough
memory in the lookup table to encode a maximum of 256
instructions, but the base instruction set has fewer than 100.
Programmers can use the extra memory in the table to define
their own instructions for specific applications, a powerful
feature. Moreover, the instruction set can change at run time,
so the CS301 can adapt to different applications on the fly.

Configurable processors like ARC International’s
ARCtangent-A4 and Tensilica’s Xtensa V have customizable
instruction sets, but their configurations are fixed at design
time. The instruction sets don’t change at run time, as the
CS301’s can. However, developers can customize an ARC or
Tensilica processor more extensively by modifying the I/O
buses, adding new registers, and designing entirely new func-
tion units with application-specific logic. The I/O buses and
register files in the CS301 are not configurable, and custom
instructions must use the processor’s existing function units.

The number of custom instructions programmers can
create for the CS301 depends on the instructions’ complexity.
To reach the theoretical maximum of 256 total instructions,
each instruction would have to execute in an average of four
clock cycles. A complex instruction that requires 64 cycles
would occupy the space of 16 four-cycle instructions. Such a
complex instruction is not unimaginable, because the CS301
allows programmers to encapsulate an entire subroutine in a
single instruction.

For instance, one custom instruction could perform the
butterfly operation of a fast Fourier transform (FFT). The
group of microinstructions that forms this complex instruc-
tion would resemble the bundle of operations in a VLIW
instruction, or perhaps a SIMD instruction that operates on
multiple operands. And like a complex CISC instruction, the
custom instruction would reduce the demand for instruction-
fetch bandwidth, because one instruction would do the work
of a whole routine.

Programmers can use their custom instructions with
ClearSpeed’s software-development tools, including the C
compiler, assembler, debugger, and simulators. The C com-
piler won’t automatically use custom instructions during
compilation, but programmers can invoke the instructions

with inline assembly language or intrinsic functions. This is
similar to the way custom instructions work with the tools for
configurable processors.

EEMBC benchmarks for the ARCtangent-A4 and
Xtensa show that custom extensions can boost the processor’s
baseline performance by an order of magnitude or more.
Without the ability to incorporate application-specific logic,
the CS301 almost certainly can’t match those results, but the
performance improvement afforded by custom instructions
should still be significant.

Is the Memory Bus a Bottleneck?
Unfortunately, ClearSpeed lacks any SPEC or EEMBC scores
to tout—the company hasn’t yet joined either benchmarking
consortium. There are, however, some data points available
for estimating the CS301’s performance: peak GFLOPS and
some informal benchmarking by Lockheed Martin, a poten-
tial customer.

Lockheed used a cycle-accurate simulation of the CS301
to run two programs optimized by WorldScape Defense, a
U.S. company that specializes in software for sensor arrays,
immersive imaging, telepresence, and other visualization tech-
nologies. One program executed eight FFTs in parallel, each a
1,024-point, complex floating-point FFT. The other program
executed eight pulse-compression routines in parallel, each
consisting of an FFT, an inverse FFT (iFFT), and a complex
multiply by a stored reference FFT. As Table 1 shows, the
CS301 outperformed a Motorola PowerPC MPC7410 and
delivered much greater power efficiency in this limited test.

Calculating peak GFLOPS is a straightforward way to
compare microprocessors, but it has limitations. The CS301
has two FPUs in each of its 64 processing elements, and they
can work in parallel, so they can execute a theoretical maxi-
mum of 128 32-bit floating-point operations per clock cycle.
At the target clock frequency of 200MHz, this adds up to a
peak 25.6 GFLOPS—an impressive number that easily beats
the peak GFLOPS for general-purpose processors in PCs,
workstations, servers, and even the world’s most powerful
supercomputer.

For instance, an Intel Pentium 4 processor can execute
four 32-bit floating-point operations per cycle, using SSE

© I N - S T A T / M D R N O V E M B E R 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Floating Point Buoys ClearSpeed

Frequency Power FFT/sec Pulse/sec

Perf. Gain — — 4.5x 7.7x
Pwr Efficiency — — 18.6x 31.9x

49,960.0

Motorola
MPC7410

400MHz 8.3W 25,331.6 6,490.6

ClearSpeed
CS301

200MHz 2.0W 113,740.0

Table 1. In these informal benchmarks by Lockheed Martin, Clear-
Speed’s CS301 easily beats a Motorola PowerPC processor that runs at
twice the clock rate and consumes four times as much power. Equally
important for many embedded systems, the CS301 has an even larger
advantage in power efficiency. ClearSpeed says it has since verified
these simulated results on actual silicon: performance is slightly better,
and power consumption slightly lower.

6

instructions and 128-bit registers. At 3.4GHz—the fastest
clock frequency likely to be available in 1Q04, when the
CS301 may ship—the Pentium 4 can deliver a peak 13.6
GFLOPS, or slightly more than half the performance of the
CS301 at 17 times the clock speed. Of course, for the price of
one CS301 chip, a customer might be able to buy two
3.4GHz Pentium 4 chips, which would provide an aggregate
peak of 27.2 GFLOPS. But the pair of Pentium 4 chips would
burn nearly 200W, whereas the CS301 doesn’t even simmer
at 1.8–2.5W.

Workstation/server processors also fall short of the
CS301’s peak 25.6 GFLOPS. Intel’s Itanium-2 can execute a
peak 6 GFLOPS at 1.5GHz. IBM’s PowerPC 970, known to
Apple users as the PowerPC G5, can execute a peak 16 GFLOPS
at 2.0GHz when using its vector FPU for SIMD operations
(four 32-bit multiply-adds per cycle). Even the custom ES
microprocessors in the world’s fastest supercomputer—the
Earth Simulator at the Japan Marine Science and Technology
Center—cannot match the CS301’s peak performance. The ES
processors are based on NEC’s SX-6 microprocessor, which
can execute a peak 8 GFLOPS at 500MHz. (See MPR 3/17/03-
01, “Scalable MicroSupercomputers.”)

But there’s a catch. Peak GFLOPS represent the maxi-
mum possible performance under ideal conditions at a spe-
cific moment in time. It’s a far cry from sustained perform-
ance under real-world conditions. For instance, on paper, the
Pentium 4’s peak floating-point performance easily beats the
Itanium-2. The SPEC benchmarks, which simulate actual
conditions with a real workload, tell a very different story: the
1.5GHz Itanium-2 scores 2,119 SPECfp_base2000 compared
with 1,092 for a 3.06GHz Intel Xeon. The Itanium-2 delivers
twice the sustained performance at half the clock speed of the
Pentium 4 because it has a much larger register file and an
architecture that allows more-efficient instruction scheduling
for compute-intensive applications.

The CS301’s potential for sustaining its superlative peak
performance is suspect. The bottleneck will likely be I/O
bandwidth to main memory, at least in certain kinds of appli-
cations. With a 64-bit bidirectional bus that runs at 200MHz,
the CS301 provides only 1.6GB/s of off-chip memory band-
width in either direction, or 3.2GB/s of aggregate memory
bandwidth. (The bridge ports provide another 1.6GB/s of
aggregate I/O bandwidth, but only with other CS301 chips in
multiprocessor designs.) For most floating-point applications,
3.2GB/s seems like insufficient plumbing to supply a massively
parallel processor that has 128 FPUs.

In comparison, the Itanium-2 has a 128-bit bus that
runs at 400MHz, providing 3.2GB/s of bandwidth in each
direction, or 6.4GB/s of aggregate I/O bandwidth. The
Pentium 4 has the same amount of I/O bandwidth as the
Itanium-2, albeit with a bus half as wide (64 bits) and twice
as fast (800MHz). The PowerPC 970/G5 can provide more
than 7.0GB/s of aggregate data bandwidth, using a pair of
32-bit unidirectional buses that can run at 1.0GHz (one-half
the 2.0GHz core clock frequency).

Several factors may work in the CS301’s favor. General-
purpose processors tend to run applications with a higher
instructions-to-data ratio than scientific applications have,
so they need more I/O bandwidth for instruction fetching.
The ability to customize the CS301’s instruction set at run
time can greatly reduce the number of instructions it needs
to fetch. The CS301’s processing elements are more self-
contained than ordinary function units, thanks to their local
register files and data memories, so they need not access off-
chip memory as often. And hardware multithreading will
allow the CS301 to use its I/O bandwidth and compute
resources more efficiently.

Even so, the CS301 will fare better in compute-intensive
applications rather than data-intensive ones. In other words,
it’s more suitable for applications in which the processor car-
ries out many operations on the same data instead of applica-
tions requiring relatively few operations on streams of data.
When the 64 processing elements are fetching data from their
local memories over their internal 32-bit buses, the on-chip
data bandwidth is 51.2 GB/s (64 × 32 bits × 200MHz).

Therefore, as ClearSpeed suggests, the CS301 may in-
deed excel at testing many different drug molecules against a
protein. It could store the protein data in the local memories
of the processing elements and run 64 different models of
the drug molecule simultaneously. However, the CS301 may
be less impressive at applying a signal-processing algorithm
to a continuous datastream from a broadband communica-
tions channel. Only careful benchmarking will reveal these
characteristics.

A Unique Extreme Processor
By definition, all the microprocessors we call extreme
processors have exotic architectures, unusual features, and
potentially outstanding performance in at least some appli-
cations. Yet even in this exclusive club, ClearSpeed’s CS301 is
unique. Its parallelism is becoming more commonplace, but
the additions of eight-level hardware multithreading and a
programmable instruction set differentiate the CS301 from
other extreme processors in significant ways. Certainly, its
25.6 peak GFLOPS and 10 GFLOPS per watt put the CS301
in a class by itself.

That said, the CS301 isn’t quite the revolution that some
press reports have implied. The CS301’s ability to sustain its
high floating-point performance is yet to be demonstrated
under real-world (or even industry-standard synthetic
benchmark) conditions.

ClearSpeed has been suggesting that the low-wattage
CS301 can bring world-class floating-point capability to any
PC or laptop by adding a PCI card or PC Card, but that would
impose an even tighter I/O bottleneck on data throughput.
The PCI buses in most PCs and the PCMCIA CardBus inter-
faces in most laptops are only 32 bits wide and run at 33MHz,
offering a mere 133MB/s of bandwidth—about 4% as much
bandwidth as the CS301’s I/O bus. In some applications, a
plug-in accelerator with a great deal of onboard memory to

© I N - S T A T / M D R N O V E M B E R 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Floating Point Buoys ClearSpeed

7

buffer the data might be useful, but it clearly isn’t the ideal way
to take advantage of the CS301’s capabilities.

The ideal system would be designed around the CS301,
much as Japan’s Earth Simulator is designed around NEC’s
custom ES microprocessors. The cool-running CS301 lends
itself to a massively parallel system architecture that packs
dozens or hundreds of chips into a small space. Server blades
that plug into a high-bandwidth backplane are another
possibility. Of course, those kinds of systems would require a
bigger design win than a PCI card or a PC Card—but an ex-
treme processor deserves an extreme system architecture.

© I N - S T A T / M D R N O V E M B E R 1 7 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Floating Point Buoys ClearSpeed

P r i c e & Av a i l a b i l i t y
ClearSpeed has production samples of the CS301
processor and says it can ramp up production in 1Q04,
if warranted by customer demand. Simulators, develop-
ment boards, and software-development tools are avail-
able now. Production chips will cost $975. For more
information, visit www.clearspeed.com.

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

