
© I N - S T A T / M D R D E C E M B E R 1 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

transistor budgets for something besides humongous on-
chip caches.

The latest example—announced during the Extreme
Processors session at Microprocessor Forum 2003—is a
configurable parallel-processing architecture from Silicon
Hive, a Netherlands-based startup funded by Philips Elec-
tronics. Silicon Hive has created what it calls an ultralong
instruction-word (ULIW) architecture—an apt description.
As with a very long instruction-word (VLIW) architecture, a
special compiler bundles multiple operations together for
simultaneous execution on a target processor. But with
instruction words that stretch up to 768 bits long, each con-
taining scores of operations, Silicon Hive’s ULIW architec-
ture surpasses every known VLIW machine. It’s also highly
configurable, allowing designers to alter almost every feature
for optimum performance in vertical applications.

To support this unusual architecture, Silicon Hive has
created a whole ecosystem: a tool chain for rapidly designing
custom ULIW cores, a library of function units for designers
to choose from, and adaptive software-development tools.
Putting theory into practice, the company has developed two
ULIW-based cores for licensing as synthesizable intellectual
property (IP). Known as the Avispa (“wasp” in Spanish) and
Avispa+, the preconfigured cores are designed for signal pro-
cessing in orthogonal frequency-division multiplexing
(OFDM) radio applications.

As a measure of what’s possible with this architecture,
Avispa+ can execute nine billion operations per second

(GOPS) at a clock frequency of only 150MHz. When
Avispa+ is fabricated in a 0.13-micron bulk CMOS process,
core voltage is 1.0–1.05V and power consumption is only
about 150mW under worst-case military conditions (125°C).
The processor core will occupy a mere 4mm2 of silicon.
Although 150MHz is on the lower end of the clock-speed
spectrum, the other statistics are impressive for a fully syn-
thesized, standard-cell design that can issue 60 operations
per clock cycle.

What’s more, Silicon Hive says its proprietary tool
chain can generate similar processor cores to customer spec-
ifications in a matter of days. The company’s first customer
(not yet publicly announced) expects to tape out an SoC
with a customized ULIW core this quarter. That chip will be
a media processor that replaces several ASICs in a low-end
MPEG4 application. It may also be used for image stabiliza-
tion in a mobile-phone video camera.

Essentially, Silicon Hive blends the design-time config-
urability offered by companies like ARC International, MIPS
Technologies, and Tensilica with a parallel-processing archi-
tecture for compute- and data-intensive tasks. Silicon Hive’s
goal is to replace some of the general-purpose processors,
DSPs, and ASICs in high-performance embedded systems
with a customized, programmable, ULIW-based SoC
coprocessor. The system may still require a general-purpose
processor to run the operating system and handle control
tasks, but it can offload the heavy number crunching or sig-
nal processing to the ULIW core.

SILICON HIVE BREAKS OUT
Philips Startup Unveils Configurable Parallel-Processing Architecture

By Tom R. Halfhi l l {12/1/03-02}

Parallel lines never meet, but great minds think alike. Maybe that explains the convergence

of parallel processors at this year’s Microprocessor Forum and Embedded Processor

Forum. All over the world, maverick CPU architects are trying to exploit their soaring

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

One tradeoff of using a ULIW processor is that the
compiler is responsible for scheduling instructions, syn-
chronizing the pipeline, and allocating the CPU’s resources,
so programs must be recompiled for different implementa-
tions of the architecture. And as is always the case with
extreme processors, Silicon Hive’s greatest challenge will be
explaining its unorthodox architecture to customers and
justifying its benefits.

Taking a Guillotine to Overhead
Silicon Hive’s cofounder and chief processor architect,
Jeroen Leijten, argues that conventional microprocessor
architectures are burdened with too much overhead to be
the best choice for intensive processing. Conventional
processors share function units, register files, buses, caches,
and other resources throughout the chip, creating conflicts
and interdependencies that have nothing to do with true
data dependencies. As the chips grow more complex, they
require increasing amounts of control logic to manage their
resources and schedule instructions through their pipelines.
Their centralized resources make it difficult to scale new
designs in step with rising transistor budgets. And their
instruction sets are rigid, conforming to a general-purpose
model, with perhaps a few specialized extensions.

The solution, says Leijten, is to grant the computational
logic more independence; replicate the function units on a
larger scale; move as much control overhead as possible out
of the processor and into the compiler; enable the processor
to issue dozens of operations per cycle; and make it easier to
customize the instruction set for specific applications.

None of these ideas is new, of course, although com-
bining all of them in one architecture is unusual. Turning
function units into miniprocessors, with their own local
resources, is common in other parallel architectures recently
described in MPR, such as those from ClearSpeed, Elixent,
and PicoChip. (See MPR 11/17/03-01, “Floating-Point Buoys
ClearSpeed,” MPR 7/21/03-01, “Elixent Expands SoCs,” and
MPR 10/14/03-03, “PicoChip Makes a Big MAC.”) Shifting
control overhead and resource allocation into the compiler is
the underlying philosophy of all VLIW architectures and
Intel’s EPIC VLIW variation. (See MPR 10/6/99-01, “Merced
Shows Innovative Design.”) Configurable instruction sets
are the salient feature of the ARC, Tensilica, and most recent
MIPS microprocessor cores. (See MPR 9/22/03-01, “ARC
Accelerates Cryptography,” MPR 6/23/03-01, “Tensilica’s
Software Makes Hardware,” and MPR 3/3/03-01, “MIPS
Embraces Configurable Technology.”)

Silicon Hive’s innovation lies in uniting extremely
wide instruction-level parallelism with design-time config-
urability. The company has developed a sophisticated hard-
ware/software design system that rapidly generates an opti-
mized processor core, an instruction-set architecture (ISA),
and a matching tool chain to customer specifications. This
system generates the processor core from a flexible architec-
tural template that can vary the number of processing units,
function units, register files, interconnects, and local mem-
ories. To optimize the ISA, designers can add new instruc-
tions, function units, and registers, and they also determine
the number of issue slots (operation subfields) within an
instruction word.

Even the lengths of operations within the instruction
words are configurable. Individual operations can vary in
size, unlike the fixed subfields in most VLIW architectures.
For instance, the Avispa+ signal-processing core has 768-bit
instruction words and operations that vary in length from
1 bit to 30 bits. A single Avispa+ instruction word may con-
tain up to 60 issue slots, so the average length of an opera-
tion is only 12.8 bits—more compact than a typical CISC
instruction.

Like a VLIW compiler, however, the ULIW compiler
must use inactive NOPs to pad any issue slots it can’t fill
with useful operations. Therefore, the average length of an
active operation will be longer than 12.8 bits, depending on
the nature of the program code.

Distributed Resources Avoid Conflicts
The foundation of Silicon Hive’s ULIW architecture is a
logic block called a processing and storage element (PSE).
It’s much more than a function unit and a little less than a
self-contained processor. PSEs are configurable during the
design phase of a ULIW core. Each PSE has its own function
units, register files, issue slots, memory I/O, local intercon-
nects, and interfaces with neighboring PSEs. ULIW proces-
sors can have many PSEs, which work together to form a
common datapath.

© I N - S T A T / M D R D E C E M B E R 1 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Silicon Hive Breaks Out

Table 1. Despite its significantly greater resources, Avispa+ is smaller
than the initial Avispa core and consumes less power while delivering
higher performance. Silicon Hive says it achieved this by making the
local data memories in the PSEs single ported instead of dual ported,
which simplified the routing and halved the size of the memories in
the synthesized layout. To compensate for the single porting, Avispa+
adds small caches to the data memories.

Silicon Hive Silicon Hive
Feature Avispa Avispa+
Architecture ULIW ULIW
Application Domain ODFM radio ODFM radio
Instruction-Word Width 486 bits 768 bits
Issue Slots Per Word 41 operations 60 operations
Instruction Memory 32K 48K
Arithmetic PSEs 4 4

Dual-Port Minicaches — 4
Local Data Memory 4x4K dual port 4x4K single port
Viterbi Registers — 4x48 bits

Control & I/O PSE 1 1
Function Units (Total) 75 103
Register Files (Total) 95 130
Clock Freq (0.13µ) 150MHz 150MHz
Core Area (0.13µ) 6.5mm2 4mm2

Power (150MHz) ~127.5mW ~150mW
Peak Performance 6.15 GOPS 9 GOPS
Availability Now Now

3

For example, Avispa+ has four identical PSEs for arith-
metic operations. Each PSE provides 12 instruction-issue
slots, representing one or more function units per slot. Those
function units include a 16-bit ALU; a 16 × 16-bit multiplier;
a 40-bit adder/accumulator that, together with the multi-
plier, makes a 16 × 16-bit multiply-accumulate (MAC) unit
with 40-bit accumulation; a 40-bit scaler for the accumula-
tor; a 16-bit barrel shifter; two 16-bit address-generation
units (AGU) with modulo addressing; a four-way SIMD
add-compare-select unit that operates on 48-bit packed data
for Viterbi acceleration; and two 16-bit load/store units con-
nected to dual-ported minicaches and 4KB of single-ported
local data memory.

In addition, Avispa+ has a fifth PSE for control and
I/O. Its function units include a 16-bit ALU; a branch unit;
two 16-bit AGUs; two 16-bit load/store units connected to
dual-ported minicaches and 32KB of single-ported local
data memory; and a 32-bit load/store unit connected to a
bus-master interface. Counting the four arithmetic PSEs and
the control-I/O PSE, Avispa+ has 60 available issue slots in a
768-bit instruction word. Under ideal conditions, the core
can actually issue 60 instructions per clock cycle, which adds
up to 9 GOPS at 150MHz. Table 1 compares the vital features
of the Avispa and Avispa+ cores.

Distributing resources across the processor is funda-
mental to the ULIW architecture. Function units have their
own dedicated registers instead of sharing a centralized register
file with other function units, although they can sometimes
save results in the registers of other function units. Typically, a
dedicated register file has no more
than four registers, usually 16 bits
wide. Yet register starvation
shouldn’t be a problem with this
processor, and the core is smaller
than it would be with a central-
ized register file large enough to
serve its needs. Instructions are
smaller, too, because they need
fewer register-address bits. In fact,
some instructions have no register
addressing at all, because they use
only one register. The compiler
handles all register assignments,
so the processor requires no con-
trol logic for avoiding register
conflicts.

Figure 1 is a block diagram
of the basic ULIW architecture.
Because the architecture is con-
figurable, this diagram doesn’t
represent any particular core
implementation. The “network”
bubbles represent the local inter-
connects between a PSE’s register
files and function units.

What keeps the PSEs from qualifying as self-contained
processors is their lack of local instruction memory and
autonomy. Although they have local data memories, they
fetch instructions from a common on-chip instruction
memory, whose size is configurable. The instruction mem-
ory’s width is equal to the ULIW width, and the designer
determines the depth. For instance, Avispa+ has 768-bit-
wide instructions and enough on-chip memory for 512
instructions, or 48KB total. The earlier Avispa core also has
enough memory for 512 instructions, but the instructions
are “only” 486 bits wide, so instruction memory totals 32KB.

Unlike the array processors in PicoChip’s PC101 and
PC102 chips, Silicon Hive’s PSEs aren’t designed to work
independently. No matter how many PSEs are present, they
all work in parallel, and the software-development tools
view them as a single datapath.

Two Modes of Execution
The ULIW architecture has two processing modes, which
are really different methods of execution instead of distinct
hardware modes with unique states. In what Silicon Hive
calls standard DSP mode, the processor fetches a new
instruction every clock cycle and is much like a conven-
tional VLIW processor—the ULIW instructions may con-
tain multiple operations that execute in parallel. Generally,
this mode handles control code, the pre- and post-ambles
of loops, conditional branches, and irregular code that has
less parallelism than the innermost loops of algorithmic
subroutines.

© I N - S T A T / M D R D E C E M B E R 1 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Silicon Hive Breaks Out

Figure 1. Block diagram of Silicon Hive’s ULIW architecture. The number of processing and storage ele-
ments (PSE), register files, function units, and data memories is flexible, depending on the core configu-
ration. The master/slave I/O bus is configurable; the Avispa and Avispa+ cores have a 32-bit I/O bus.

Se
qu

en
ci

ng
 L

og
ic

....

Network

FUFU

RF RF....

Network

RF RF....

Network

RF RF....

Network

....

Network

FUFU

...

...
...

.

....

Network

FUFU

....

....

....

....Data
Mem

Data
Mem

Data
Mem

Inst Reg

Inst Mem

Bus Interface

PC

4

In the other execution mode, pure dataflow mode, the
processor doesn’t fetch a new instruction every clock cycle.
Instead, it executes a tight loop within a single instruction.
This happens when the compiler can encapsulate the entire
body of an inner loop in a single ultralong instruction word,
typically when there is a great deal of exploitable parallelism.

In effect, dataflow mode is like repetitive execution
within a programmable logic block of an FPGA: data flows
through the block, the programmable logic operates on the
data, and the processor doesn’t have to keep fetching the
same instructions over and over again.

Pure dataflow mode can handle sophisticated tasks.
For instance, the Avispa and Avispa+ cores are designed to
execute the butterfly routine of a 2,048-point complex fast
Fourier transform (FFT) in dataflow mode with a single
ULIW instruction. In fact, the processor spends 98% of its
execution time for the FFT in a single-instruction, single-
cycle loop.

Figure 2 illustrates the efficiency of pure dataflow
mode. It’s a screen shot of a Silicon Hive profiling tool that
lets the CPU architect or application programmer visualize

how efficiently a section of code is using the processor’s
resources. In this example, the tool is analyzing the execution
of a 2,048-point FFT on an Avispa core that has four PSEs.
The labels along the left represent the 41 issue slots for the
function units of the PSEs. The numbers along the top rep-
resent sequential memory addresses for the routine. The
columns indicate whether an issue slot is “active”—that is,
occupied by a useful instruction. Dark squares in the
columns indicate active slots; the gray squares indicate inac-
tive slots (padded with NOPs). The numbers along the bot-
tom indicate the percentage of active issue slots per instruc-
tion, obtained by dividing the number of active slots into the
total number of slots available in this core. In other words,
darker squares are better, and they tend to cluster around the
innermost loops of the FFT, which the core executes in a sin-
gle cycle.

An off-the-shelf compiler would be baffled by this
extreme architecture, so Silicon Hive provides its own C
compiler, HiveCC. It’s a proprietary spatial compiler that
uses an optimization technique known as constraint solv-
ing. HiveCC creates a mathematical constraint model of the

© I N - S T A T / M D R D E C E M B E R 1 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Silicon Hive Breaks Out

Figure 2. This screen shot of a Silicon Hive profiling tool shows an FFT executing on an Avispa ULIW core that has four PSEs and 41 instruction-
issue slots. While executing the body of the innermost loop, the core keeps 31 out of 41 issue slots active (76%). Overall, the core is spending 98%
of its execution time in the single-instruction, single-cycle loops of pure dataflow mode, as indicated by the darkest column of squares.

5

program’s dataflow graph and matches it with a similar con-
straint model of the processor. Aggressive software pipe-
lining and compiler-directed instruction scheduling and
register allocation are key parts of this technique. Silicon
Hive claims HiveCC can uncover much more instruction-
level parallelism than compilers for other processors.

If that claim is true, HiveCC is a significant advance in
applied high-performance computing. Past attempts at
extreme instruction-level parallelism have fallen short—not
for lack of issue width or processing resources, but because
it’s so difficult to find and exploit the inherent parallelism in
real-world code. With instruction words that are hundreds
of bits long containing dozens of issue slots, Silicon Hive’s
ULIW architecture is certainly wide enough. However, it
seems that such wide instruction words would be overpop-
ulated with NOPs much of the time. The FFT profile in Fig-
ure 2 is impressive, but is it representative?

To tame our skepticism, Silicon Hive offered the addi-
tional data shown in Table 2. It demonstrates how efficiently
Avispa and Avispa+ can use their issue slots and execution
resources when running a variety of signal-processing tasks.
In pure dataflow mode, issue-slot utilization ranges from
36.6% to 82.9%, and execution utilization (the number of
operations “in flight”) ranges from 41.5% to 107.3%. (Exe-
cution utilization can exceed 100% because the function
units are pipelined, so the number of operations in various
stages of execution can exceed the number of issue slots.) In
standard DSP execution mode (the second Viterbi example
for Avispa+), both measures of utilization drop by almost
half, but they are still respectable for a mode that’s inher-
ently less parallel.

Because the compiler, not the processor, is responsible
for scheduling instructions and allocating the processor’s
resources, software must be recompiled for different ULIW
implementations. For instance, without recompilation, a
binary executable for Avispa won’t run on Avispa+, or vice
versa, even though they are similar cores.

Binary incompatibility among different implementa-
tions is a common limitation of VLIW-type architectures.
It’s what prompted Intel and
Hewlett-Packard to devise
EPIC—a clever variation of
VLIW that allows different
IA-64 processors to remain
binary compatible. For a
server-processor architec-
ture, binary compatibility is
vital, because users want to
run their installed base of
software without recompil-
ing the code each time a
new processor is introduced.
Silicon Hive’s ULIW archi-
tecture is intended for
embedded processors, so

compatibility with an installed base of software is somewhat
less important.

Silicon Hive Is the Queen Bee
Unlike ARC, MIPS, and Tensilica, Silicon Hive doesn’t allow
customers to operate the processor-configuration machin-
ery themselves. There’s no utility like ARChitect or the
Xtensa Processor Generator that exposes the configurable
features of the architecture directly to customers. Instead,
Silicon Hive takes the customer’s specifications, generates
the core internally, and delivers the synthesizable model in
VHDL or Verilog format. At that point, customers can use
industry-standard EDA tools to complete their SoC design.

In practice, Silicon Hive expects to satisfy most cus-
tomers by letting them choose from a collection of ULIW
cores preconfigured for popular embedded applications.
Only if a customer needs something special would Silicon
Hive have to generate a wholly new implementation.

At the center of this system is a proprietary hardware-
design language called The Incredible Machine (TIM). TIM
allows Silicon Hive to configure a core by specifying high-
level parameters: the number of function units, register
files, and interconnects; the number of issue slots; the list of
instructions each function unit can execute, and so forth.
From this information, TIM deduces other parameters,
such as the length of the instruction words.

TIM is a higher-level language than VHDL, Verilog, or
Tensilica Instruction Extension (TIE) language. It can

© I N - S T A T / M D R D E C E M B E R 1 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Silicon Hive Breaks Out

Table 2. Silicon Hive collected this data by running some common signal-processing algorithms on simulations
of the Avispa and Avispa+ cores. “Operations issued per cycle” excludes the NOPs required to pad inactive
subfields in the instruction words. “Op execution per cycle” indicates how many non-NOP instructions were
in various stages of execution. *A single-cycle loop executed in pure dataflow mode. **A six-cycle loop exe-
cuted in standard DSP mode.

Processor Issue Ops Issued Issue-Slot Op Execution Execution
Task Core Slots Per Cycle Utilization Per Cycle Utilization
2K-Point FFT Avispa 41 31 75.6% 41 100.0%
32x32-Bit DCT Avispa 41 34 82.9% 44 107.3%
Baseband Decider Avispa 41 15 36.6% 17 41.5%
Freq De-Interlacer Avispa 41 15 36.6% 23 56.1%
Inter-Demodulator Avispa 41 17 41.5% 23 56.1%
Intra-Demodulator Avispa 41 17 41.5% 21 51.2%
Viterbi Decoder* Avispa+ 60 37 61.7% 59 98.3%
Viterbi Decoder** Avispa+ 60 22.8 38.0% 29.5 49.2%

P r i c e & Av a i l a b i l i t y

Silicon Hive’s Avispa and Avispa+ synthesizable
processor cores are available for IP licensing now. In addi-
tion, the company will create custom implementations of
the ULIW architecture to customer specifications. Licens-
ing fees and terms have not been disclosed. For more
information, visit www.siliconhive.com.

6

describe a register file by simply specifying the number of
registers, the widths of the registers, and the number of
read/write ports. From these descriptions, TIM invokes
prewritten blocks of VHDL or Verilog. A mere 300 lines of
TIM can result in 100,000 lines of Verilog or VHDL. TIM
also drives the development-tool generator that creates a
matching assembler, linker, C compiler, instruction-set sim-
ulator, and cycle-accurate simulator. Figure 3 is a flowchart
of Silicon Hive’s design system.

Silicon Hive says it can create an optimized imple-
mentation of its ULIW architecture in a matter of hours,
depending on the amount of fine-tuning the customer
requires. After Silicon Hive delivers the design in VHDL or
Verilog format, final synthesis and layout might take a few
hours to a few days, depending on the design’s complexity
and the amount of simulation and verification required.
Turn-around time is comparable to what is possible with
the customer-driven design tools that other configurable-
processor vendors offer.

Even so, we think it would be advantageous for Silicon
Hive to put customers in the driver’s seat with a graphical
user interface that exposes the ULIW architecture. It would
push more design work outside the company and give cus-
tomers a greater sense of control over their configurations.
The disadvantage is that it would require more customer
education and tech support, but that doesn’t seem to hinder
other configurable-processor vendors.

A Hybrid Strategy for Licensing IP
It’s interesting to compare Silicon Hive’s business model with
those of rival configurable-processor vendors: ARC, MIPS,

and Tensilica. Silicon Hive has
more in common with MIPS
than with ARC or Tensilica,
but its strategy is unique.

Like MIPS, Silicon
Hive is licensing preconfig-
ured soft processor cores as
well as configurable cores.
Avispa and Avispa+ serve as
proof-of-concept implemen-
tations of the ULIW archi-
tecture, and they are also
ready-to-use licensable IP. To
date, with a few minor ex-
ceptions, ARC and Tensilica
haven’t licensed preconfig-
ured cores, preferring in-
stead to let their customers
do the tweaking.

Silicon Hive departs
from all three companies’
practice by keeping the config-
uration tools in-house and by
offering an extreme parallel-

processing architecture instead of a general-purpose RISC
architecture. Despite the vast differences among these archi-
tectures, Silicon Hive may compete for some designs head-to-
head against ARC, MIPS, and Tensilica, because DSP exten-
sions and other customizations can make the RISC cores
suitable for signal-processing applications.

Another departure for Silicon Hive is its willingness to
develop application software for customers. When a cus-
tomer licenses a ULIW processor core, Silicon Hive offers a
seat license for the HiveCC tools or the option of a design-
services license. In general, ARC, MIPS, and Tensilica don’t
offer to write application software for their customers,
although they might make an exception if it helps to close
an especially lucrative deal.

Offering software-design services could be a smart way
for Silicon Hive to hedge its bets. So far, ARM is by far the
most successful provider of microprocessor IP. Everyone else
is struggling to keep their heads above water, and a few com-
panies (Lexra, PicoTurbo, and Philips’s own TriMedia spin-
off) have either drowned or retreated from processor-IP
licensing. The differentiation could be an advantage for Sili-
con Hive, especially if it helps to lure potential customers that
are wary of writing software for an oddball architecture—
even though Silicon Hive insists that the C programming
model is no different from that of any other microprocessor.

The greatest challenge for any extreme-processor archi-
tecture is proving it deserves to exist. There are plenty of
familiar microprocessor architectures for customers to
choose from. For that matter, as past issues of MPR attest,
there are also plenty of unfamiliar microprocessor architec-
tures to choose from. To stand out from the crowd, it would

© I N - S T A T / M D R D E C E M B E R 1 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Silicon Hive Breaks Out

Figure 3. Silicon Hive’s feedback-driven design system uses a proprietary configuration language called TIM
to generate optimized implementations of the CPU architecture. Feedback from the cycle-accurate simulator
helps the architect fine-tune the design by modifying the microarchitecture and the instruction set. Notice the
function-unit library at the lower left—a collection of logic blocks precompiled in register-transfer-level VHDL.

Area, Speed, Power Cycle Count

Operation
Semantic
Library

Processor
Model

(C-syntax)

Processor
Model

Generator

High-level
C Program

HiveCC
Spatial

Compiler

Assembly
Code

(C-Syntax)

Standard
C Compiler

Compiled
Simulator

Assembler
& Linker

Binary
Code

TIM
Machine

Description

Function
Unit

Library

Processor
Simulator/
Generator

Netlist
Layout

Logic Synth
Place &
Route

HDL
Code

State View
&

Trace File

Simulation
&

Verification

7

help if Silicon Hive had verifiable benchmark results compar-
ing the performance of ULIW cores against competing
processors across a wide range of software. The company
needs to make a strong case that ULIW is a valid architectural
exercise—not just VLIW on Viagra.

Even if a ULIW processor plays a secondary role as a
specialized coprocessor to a host processor, it may not be a
better option than a DSP or ASIC. An off-the-shelf DSP

doesn’t require such a great leap of faith, and an ASIC—
though perhaps not programmable—can deliver the same
or greater performance.

To win designs, Silicon Hive needs solid benchmark
data, successful examples in silicon, and open-minded cus-
tomers. With two ULIW cores on the shelf and one early
customer near tapeout, the company already has a toehold
in the market.

© I N - S T A T / M D R D E C E M B E R 1 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Silicon Hive Breaks Out

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

