
© I N - S T A T / M D R J U L Y 1 2 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

Last week, Tensilica announced that its long-anticipated
XPRES (Xtensa PRocessor Extension Synthesis) tool will ship
in 3Q04. A seat license will cost $100,000 and requires an
Xtensa LX processor license, which starts at $550,000. XPRES
works only with the new Xtensa LX core (see MPR 5/31/04-
01, “Tensilica Tackles Bottlenecks”), not with the previous-
generation Xtensa V core, which remains available. Instead,
Tensilica hints that XPRES may be compatible with a future
“economy model” Xtensa processor that lacks all the fancy
features of Xtensa LX.

Microprocessor Report first covered XPRES after Tensil-
ica disclosed the then-unnamed technology at Embedded
Processor Forum 2003. (See MPR 6/23/03-01, “Tensilica’s
Software Makes Hardware.”) After a detailed analysis, we con-
cluded that XPRES was a significant innovation, with the
potential to dramatically accelerate SoC projects.

We still feel that way. It’s not just that XPRES can auto-
matically generate custom hardware from C/C++ code, a
focus of widespread research and development. Rather, it’s the
whole tool chain and design flow that sets Tensilica’s technol-
ogy apart. Tensilica is closer than any other company to real-
izing a vision of software-driven automated hardware design
that for decades has mesmerized engineers, academic
researchers, and entrepreneurs.

Unified Tool Chain Speeds Development
Little about XPRES has changed since our June 2003 report,
so we’ll summarize the technology here. Basically, XPRES is

a static compiler that converts targeted functions in ANSI
C/C++ code into Tensilica Instruction Extension (TIE) lan-
guage, the company’s proprietary high-level design language
(HDL). TIE is similar to Verilog and VHDL, but it has some
special hooks and semantics for Tensilica’s Xtensa processors
and tool chain. Although TIE is intended primarily for writ-
ing user-defined extensions to Xtensa processors, it’s a power-
ful HDL in its own right. In fact, Tensilica’s engineers wrote
the Xtensa LX core almost entirely in TIE.

Before using XPRES, the first step for customers is to
recompile their C/C++ application with Tensilica’s Xtensa C
Compiler (XCC) and test the program on Tensilica’s cycle-
accurate Xtensa LX simulator. No other compiler will do, be-
cause XCC inserts some special instrumentation for code pro-
filing and analysis. One result of this initial compilation and
test run is hints on improving the source code. XCC suggests
modifications that will increase performance and make it eas-
ier for XPRES to generate application-specific extensions.

Among other things, the XCC profiler identifies which
parts of the program execute more frequently, how many
instructions of each type execute in each region of code, and
which loops would benefit from single-instruction, multiple-
data (SIMD) operations. Dataflow graphs for critical loops
show the before-and-after effects of SIMD vectorization.
(XCC is a vectorizing compiler that can automatically apply
SIMD instructions to parallel arithmetic operations.) Other
dataflow graphs, as Figure 1 shows, illustrate the effect of fus-
ing multiple instructions into a single operation.

TENSILICA’S AUTOMATON ARRIVES
New Design Tool Creates CPU Extensions From C/C++ Programs

By Tom R. Halfhi l l {7/12/04-01}

What’s even faster and cheaper than outsourcing a design project to India? Answer: outsourc-

ing it to a robot. Or, actually, to a new processor design tool that automatically generates

application-specific custom instructions by analyzing software written in plain-Jane C/C++.

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

XCC’s output is the usual executable file—which will run
on a base-configuration Xtensa LX processor or simulator—
plus some intermediate code that’s roughly halfway between
source code and object code. The intermediate code contains
representations of the dataflow graphs and is the input for
XPRES. From this code, XPRES automatically generates
application-specific TIE extensions: custom instructions and
perhaps some new registers to support the instructions. Indeed,
XPRES may generate hundreds or even thousands of possible
Xtensa configurations that will accelerate the targeted code

regions to different degrees. (Users can fence off regions
of code they don’t wish to optimize in this fashion.)

As explained in previous articles, XPRES can
generate custom extensions that take advantage of
most Xtensa LX features, including SIMD, fused
instructions, DSP instructions, and FLIX (Flexible-
Length Instruction Xtensions). The XPRES control
panel shown in Figure 2 lets users adjust parameters
for these different types of extensions—or even disable
certain types. For instance, disabling FLIX would save
about 2,000 additional gates that the processor requires
to decode the VLIW-like FLIX instructions. Frankly, we
can’t imagine many users disabling these features, con-
sidering the huge performance gains they make possi-
ble, but it’s nice to have the option.

Thousands of Configurations in Minutes
One of the exceptional features of XPRES is its
graphical displays that help designers choose the best
custom Xtensa configuration from thousands of pos-
sibilities. “Best,” of course, depends on the designer’s
goals, balancing higher performance against lower
power and cost. XPRES is an impressive tool, but it

doesn’t possess artificial intelligence. Only a design engineer
familiar with the project’s specifications can make an intel-
ligent trade-off between the processor’s performance and
the gate count.

As Figure 3 shows, XPRES aids the decision-making
process by presenting an easy-to-read graph that plots the
number of gates required for each possible configuration
against the number of clock cycles required to execute the
optimized function. Picking the optimal Xtensa configura-
tion is as simple as picking the “best” position on the graph,

which represents 1,830,796 possible
configurations.

For illustrative purposes, Ten-
silica identified the configuration
indicated by the arrow in Figure 3
as the optimal choice for this hypo-
thetical project: an accelerated
MPEG4 video encoder. This partic-
ular configuration includes 183
new instructions that boost per-
formance over the processor’s start-
ing configuration by a factor of
three. The extensions would add
about 170,000 gates to a 50,000-
gate configuration of Xtensa LX
(not including caches) and encode
an MPEG4 test file (three frames of
a 240- × 352-pixel reference image)
in 27.5 million clock cycles. Exclud-
ing other tasks, the processor could
execute the encoder at a clock fre-
quency of 42MHz.

© I N - S T A T / M D R J U L Y 1 2 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Automaton Arrives

Figure 1. Tensilica’s C/C++ compiler and profiler generated this dataflow graph
to demonstrate how fusing multiple instructions—in this case, ADD, SUB, and
ABS—can create a single custom instruction that calculates a sum of absolute dif-
ferences. Often, the fused instruction can still execute in a single clock cycle.

Figure 2. Designers can use this XPRES control panel to specify the minimum and maximum vector
lengths of SIMD instructions and the minimum and maximum issue widths of FLIX instructions as well
as to disable certain types of extensions. In addition, designers can exclude from optimization indi-
vidual regions of code in the target application.

3

Tensilica says it took only one person-day to achieve
this result—which included compiling the C/C++ source
code with XCC, testing the program on a simulator, review-
ing the profiles, feeding the dataflow files into XPRES, and
generating the 1.8 million possible configurations.

In comparison, manually designing a similar MPEG4
accelerator in Verilog or VHDL would probably take several
person-years. More to the point, a regular design team prob-
ably wouldn’t create 183 new instructions or more than one
solution to the problem—much less 1.8 million solutions.
Instead, the designers would aim for a particular level of per-
formance within a gate-count budget and try to stay within
those specifications. If something went wrong, the perform-
ance might fall short, or the gate count might break the
budget. Months of work might have to be redone.

It’s the ability of XPRES to rapidly generate so many
possible configurations that makes it so compelling. Like any
automated tool, it probably won’t create an extension that’s
clearly superior to an extension designed by skilled logic engi-
neers, just as a C compiler usually doesn’t emit object code
that’s better than the handiwork of an experienced assembly-
language programmer. But compilers have largely replaced
assembly-language programmers, because they can do the job
well enough for most purposes, and they can do it in minutes.
XPRES offers the same trade-off between development time

and code efficiency for hardware that compilers do for software.
Furthermore, by offering thousands of configurations to
choose from—and by presenting the options in easily inter-
preted form—XPRES allows SoC developers to make intelli-
gent trade-offs more rapidly than would be possible with a
lengthy manual-development project.

Recursive Tool Generation
Figure 4 shows the result of an XPRES run: automatically gen-
erated TIE extensions, ready to integrate with the Xtensa LX
processor. At this point in the development process, designers
have an opportunity to manually fine-tune the TIE source code
and add any extensions they may have written manually in TIE.
For instance, if the designers created TIE extensions for an ear-
lier Xtensa processor, this point is where they can adapt the
extensions for Xtensa LX. (Normally, little or no modification
is required, because the TIE language is largely unchanged.)

Everything comes together in the Processor Generator,
Tensilica’s back-end design-automation tool. In about an hour,
the Processor Generator integrates all the TIE extensions with
the Xtensa LX processor core; converts the whole model into
register-transfer-level (RTL) Verilog or VHDL; writes scripts
for popular synthesis compilers; creates a cycle-accurate simu-
lator of the customized processor; modifies the software-
development tools so they can recognize the new instructions

© I N - S T A T / M D R J U L Y 1 2 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Automaton Arrives

Figure 3. In 30 minutes, XPRES generated 1,830,796 possible Xtensa LX configurations for accelerating an XviD MPEG4 video encoder, assuming
Quarter Common Intermediate Format (QCIF) at 15 frames per second. Each configuration has one or more custom extensions, which may include
new instructions and registers. The x-axis shows the estimated number of additional gates required for the extensions (not including the processor
core), and the y-axis shows the number of clock cycles required to encode an MPEG4 test file.

4

and registers; and makes popcorn
for the design team. (OK, the last
step is an exaggeration, but every-
thing else is true.)

An important new part of this
automated process is modification
of the software-development tools.
In the past, Xtensa programmers
could invoke custom instructions
by calling automatically generated
intrinsic functions from their
C/C++ programs, but not until
they manually inserted the function
calls into the source code. With
Xtensa LX, the improved Processor
Generator modifies XCC so it can
automatically use the custom
instructions when compiling the
targeted C/C++ functions. The
program’s source code doesn’t
change. In fact, XCC is smart
enough to use the custom instruc-
tions when compiling any similar
C/C++ code—in the target pro-
gram or any other program—even
if the customer didn’t initially iden-
tify that code for optimization.

It was this new feature—
compiler-directed optimization with- out source-code
modifications—that allowed Tensilica to shatter all records in
the EEMBC out-of-the-box consumer benchmark suite. (See
the sidebar, “How Tensilica Busted the Benchmarks,” in MPR
5/31/04-01, “Tensilica Tackles Bottlenecks.”) Although Free-
scale’s MPC7447A recently seized the crown from Tensilica
with an out-of-the-box ConsumerMark score of 197.2, the
PowerPC processor had to gallop at 1.4GHz to beat the Xtensa
LX score of 171.6 at a simulated clock speed of only 330MHz.

To sum up: Tensilica’s design flow is a giant feedback
loop. At the front end, SoC developers use XCC to compile,
test, and profile their C/C++ programs. Using this feedback,
developers can write their own custom extensions in TIE or
choose from the zillions of extensions XPRES churns out. At
the back end, the Processor Generator modifies XCC so it
can recompile the C/C++ program, using the custom exten-
sions it helped create in the first place. With each iteration
of this feedback loop, the tools automatically generate new
application-specific versions of themselves, in addition to
new configurations of the Xtensa LX processor. And develop-
ers can repeat this process as often as necessary to optimize
their design. (See Figure 5.)

Design-Time Automation Speeds Up Projects
No conventional ASIC/SoC design flow or tool chain can
match the speed and interactivity of Tensilica’s XPRES system.
A complete iteration of the whole XPRES feedback loop

© I N - S T A T / M D R J U L Y 1 2 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Automaton Arrives

Figure 5. Tensilica’s XPRES design flow uses feedback-directed opti-
mization to enhance both the configurable Xtensa LX processor and
the software-development tools that drive the front end of the
process. Every customer can end up with a processor configuration
and tool chain tuned for the application and truly unique.

XPRES Compiler

C/C++ Source Code

TIE:
Designer-Defined

Instructions
TIE:

Designer-Defined
Instructions

TIE:
Designer-Defined

Instructions

TIE:
Designer-Defined

Instructions

Processor
Configuration

Inputs

Xtensa LX Processor Generator

Hardware (RTL) System Models Complete
Software Tools

Figure 4. In this screen shot from Tensilica’s Xtensa Xplorer development tool, TIE source code automat-
ically generated by XPRES appears in the large window at the upper right. The smaller window at the bot-
tom contains profiling information, such as the number of clock cycles required to execute a particular
C/C++ function. The window at the upper left allows users to navigate the TIE files XPRES generates.

5

might take as little as one day, compared with months for a
conventional design project using ordinary tools. ARC Inter-
national and MIPS Technologies offer customizable proces-
sor cores with some slick automated tools, but they fall short
of Tensilica’s highly automated front-to-back system.

Moreover, Tensilica automates one of the most time-
consuming parts of a project: grinding out line after line of
RTL for application-specific logic. XPRES can outstrip all
that effort in minutes. The other tedious phase of a project—
verifying the new logic—also contracts, because TIE is a
correct-by-construction language that’s supposed to make a
faulty design impossible. (If XPRES does spit out a faulty
design, the onus is on Tensilica, not the customer, to diagnose
and fix the problem.) XPRES frees people for the real brain-
work, such as specifying the design, writing better software,
and making the design trade-offs that will distinguish the
product in the marketplace.

As far as is publicly known, the only alternatives faster
than XPRES are those that altogether eliminate the need to
spin a custom chip. For instance, startup Stretch Inc. will soon
begin selling standard parts that integrate some reprogram-
mable logic with an Xtensa V processor core. Stretch’s C/C++
compiler can generate custom instructions to accelerate criti-
cal parts of a program, and the company’s proprietary tools
implement the instructions in the chip’s programmable logic.
(See MPR 4/26/04-01, “Stretching Performance.”) Other
companies (such as Adaptive Silicon, M2000, Proceler, and
STMicroelectronics) have offered or promised similar tech-
nology, generally without much success in the marketplace.

Tensilica’s technology differs from the programmable-
logic solutions because it’s designed to speed up a conven-
tional ASIC/SoC project. In high-volume applications that
justify the nonrecurring engineering costs of a custom design,
Tensilica’s system has a cost advantage over more expensive
standard parts having programmable logic. Tensilica would
probably have a performance advantage, too, because stan-
dard logic is faster than programmable logic. In addition,
XPRES can automatically generate SIMD, DSP, and FLIX
instructions that may not be available with other processor
architectures or microarchitectures. (For example, the Xtensa
V core in Stretch’s chips doesn’t support FLIX.) All things con-
sidered, XPRES achieves an important milestone in design
automation for programmable ASICs and SoCs.

From C to TIE to RTL
There’s an intriguing aspect of the XPRES system that Tensil-
ica isn’t strongly promoting but that nevertheless stirs some
thought. XPRES translates C/C++ source code into TIE, and
the Processor Generator translates TIE into RTL. The main
assumption is that the C/C++ code comes from a software
application that needs optimizing. But it doesn’t have to be.

Someone could use Tensilica’s system to design custom logic
in C/C++ instead of in Verilog, VHDL, or even TIE.

Note that XPRES would allow a designer to write the
functional specification for the custom logic in plain old ANSI
C or C++, not a newfangled variant like System C that has
special constructs for hardware design. Even without those
constructs, XPRES can generate surprisingly sophisticated
logic that uses parallel SIMD and FLIX operations. Of course,
the finished logic works only with an Xtensa LX processor, so
Tensilica’s system isn’t a universal substitute for System C and
similar technologies.

Anything as good as XPRES must have other drawbacks.
One, already mentioned, is the limitations of an automated
tool’s output compared with the handiwork of a skilled engi-
neer. Sometimes, XPRES will lack the human insight to thor-
oughly understand a problem and create an elegant solution.
At other times, XPRES might generate relatively sloppy TIE
code that requires more gates than handcrafted TIE code does.
Because XPRES can generate the extensions in minutes
instead of months, most customers probably won’t care. If
they do care, they can manually tweak the generated TIE code.
And with time, XPRES will only get better. At this stage, it’s
like an early Cobol compiler from the 1950s.

Another limitation of XPRES is that it’s a processor
design tool, not an SoC design tool. At present, it cannot cre-
ate the user-defined TIE ports described in our previous
Xtensa LX article—very wide parallel I/O ports that connect
the Xtensa processor core to external hardware blocks. Nor
can XPRES partition and distribute a large task across multi-
ple cores in a multiprocessor SoC. At least, not yet.

In short, XPRES doesn’t make engineers obsolete, any
more than compilers made programmers obsolete. Just as
there remains a place for skilled assembly-language program-
mers, there will continue to be a role for skilled logic design-
ers who understand a complex algorithm better than XPRES
can. Meat still rules. However, XPRES allows SoC developers
to approach a project at a higher decision-making level,
with the opportunity to delegate the routine logic design
to a robot. The engineers can think globally while XPRES
acts locally.

© I N - S T A T / M D R J U L Y 1 2 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Automaton Arrives

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

P r i c e & Av a i l a b i l i t y

Tensilica’s XPRES extension-development tool is an
extra-cost option for Xtensa LX customers. A floating
seat license (one user at a time) costs $100,000, not
including the Xtensa LX license, which starts at $550,000
for a single-processor design. For more information, see
www.tensilica.com.

