
© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

Cell isn’t meant just for fun and games. It’s also intended for
professional graphics workstations and other computing
devices, which makes people wonder what kind of magic will
be bottled in the chips.

Tantalizing details will trickle out in February, when
IBM presents several papers about Cell at the International
Solid-State Circuits Conference (ISSCC) in San Francisco.
Until then, nothing beats a weighty 57-page patent issued to
IBM, Sony, and Toshiba by the U.S. Patent and Trademark
Office on October 29, 2004. Patent 6,809,734 describes the
Cell architecture in detail, with 42 pages of illustrations.

Of course, the Cell partners applied for their patent on
March 22, 2001, so it’s likely some things have changed in the
four years since then. However, the ’734 patent is strikingly
similar to an earlier U.S. patent (6,526,491), issued on Febru-
ary 25, 2003 to Sony alone, and to four pending U.S. patent
applications by the companies. (See the “For More Informa-
tion” box.) All the patents and applications describe the same
new architecture, which rises from the microprocessor level
to encompass complete systems and networks.

A new architecture? Isn’t Cell based on the PowerPC
chip? That’s what many had assumed for years, and IBM has
confirmed that its Power architecture (the company’s
umbrella term for the architecture that includes the PowerPC
and Power server processors) is part of Cell. However, the
’734 patent refers to “a new architecture for computers, com-
puting devices, and computer networks” and “a new pro-
gramming model for these computers, computing devices,

and computer networks.” Microprocessor Report believes the
“new programming model” is a way of binding program
code and data together in special bundles, perhaps as part of
a new instruction-set architecture (ISA). The ’734 patent
describes a much larger register file and other novel architec-
tural features not found in any PowerPC chips today. If Cell
isn’t a wholly new architecture, it may at least be a significant
extension of PowerPC.

The most important information in the ’734 and ’491
patents is that Cell isn’t just a single microprocessor or even
a family of processors. It’s a top-to-bottom architecture for a
broad range of computing systems, from servers and work-
stations at the high end to game consoles, PDAs, digital TVs,
and other consumer electronics at the low end. The name
Cell derives from the architecture’s “software cells,” which
combine program code, data, global identification numbers,
and other metadata in formatted bundles. Software cells can
freely migrate in search of execution resources—whether
those resources are in a single chip, spread across multiple
chips in a system, or distributed across multiple systems on a
local or global network. With the Cell architecture, clustering
and grid computing are native concepts. It’s a new parallel
programming model for a fast-approaching age of universal
multiprocessing.

To date, most attention has focused on Cell as a whiz-
bang videogame chip. It’s not unrealistic to expect sales of 100
million units for the PlayStation 3 over its product lifetime,
but the Cell partners appear to have even bigger ambitions in

NEW PATENT REVEALS CELL SECRETS
IBM, Sony, Toshiba Develop Secure Parallel-Processing Architecture

By Tom R. Halfhi l l {1/3/05-01}

No microprocessor since Intel’s Merced has stirred as much curiosity as the Cell processor

under development by IBM Microelectronics, Sony, and Toshiba. Partly it’s because Cell is

destined for Sony’s much anticipated PlayStation 3 videogame console, due in 2006. But

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

mind. The PlayStation 3 could be merely the high-volume
consumer vehicle that pays for the startup costs of a consider-
ably larger project. Indeed, the patents boldly propose Cell as
a higher-performance alternative to Java virtual machines for
spreading a standard programming model across the full
range of client devices on the Internet. Of course, that dream
assumes a homogeneous universe of Cell-based clients and
servers—a highly unlikely scenario, no matter how innovative
the processors are.

High Scalability and Distributed Processing
On a technical level, the ’734 patent contains numerous note-
worthy nuggets about the Cell architecture. Cell processors
can have many different microarchitectures, depending on
the processing needs of the computing devices for which
they’re intended, but all share the same basic characteristics.
Here’s an overview:

Cell processors have multiple groups of function units
that can operate in parallel to execute SIMD instructions. At
run time, a processor can dynamically link arbitrary numbers
of function units together to form a temporary pipeline ded-
icated to an instruction stream. Even when this pipeline isn’t
busy, it prevents other instruction streams from preempting
its resources. Each group of function units has its own regis-
ter file, local memory, direct-memory access (DMA) con-
troller, and dedicated banks of DRAM. Special protection
mechanisms prevent different instruction streams from
accessing each others’ memory or processing resources. These
mechanisms—implemented in both the processor and
DRAM—maintain memory coherency, provide security,

and enforce digital-rights management (DRM) for copy-
righted content.

Other features are as follows:
• If a task needs more capacity than a single Cell processor

can provide, a multiprocessor system can readily distribute
the workload among its other Cell processors, optionally
using optical wave guides instead of wires for chip-to-chip
communications.

• If a Cell-based system is attached to a broadband network
(the expected default condition), it can distribute a work-
load among other Cell-based systems on the network.

In either case—system-level multiprocessing or dis-
tributed network processing—the program code and data
travel together in the aforementioned software cells.
• If a software cell must cross an external network to reach

its destination, it can wrap itself in any standard network
protocol, such as a TCP/IP packet. Figure 1, from the ’734
patent, illustrates the way software cells can travel over a
public network linking several different kinds of Cell-
based systems.

Another interesting feature: if a more powerful Cell
processor would execute a timed instruction stream (such as
audio or video) faster than the stream was intended to exe-
cute on a less powerful Cell processor, the faster processor can
synchronize execution to what the patent calls an “absolute
timer.” Alternatively, the faster processor can automatically
insert NOP (no operation) instructions to consume extra
CPU cycles.

All these features make Cell ideal for gaming. Cell’s scal-
able microarchitecture allows designers to create a variety of

processors for a broad range of
game systems. Cell processors can
execute multiple instruction
streams in parallel and run multi-
player games over broadband
networks while protecting copy-
righted content. The hardware-
level security features in the CPU
and DRAM will ward off mali-
cious hackers and bootleggers.
Cell’s dynamically dedicated
pipelines, distributed processing,
and synchronized execution can
guarantee isochronous perform-
ance on Cell-based systems with
vastly different amounts of
processing power: home video-
game consoles, game-enabled
cellphones, hand-held game
machines, speedy desktop PCs, or
powerful game servers. The
absolute timers and automatic
NOPs could also make game soft-
ware written for PlayStation 3
more compatible with later, faster

© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

New Patent Reveals Cell Secrets

Figure 1. This figure from the ’734 patent shows the way packages of program code and data, called soft-
ware cells, can migrate among different Cell-based systems for distributed processing. The cells are highly
mobile: they can move between Cell processors within a multiprocessor system or travel over external net-
works, such as LANs, public switched telephone networks (wired or wireless), or the Internet. For journeys
over external networks, the cells encapsulate themselves in wrappers with standard network protocols.
Each cell also has a unique identifier (similar to an Internet Protocol address) that specifies the destination
for results after execution.

3

systems, like a PlayStation 4. Of course, all these features could
be useful for nongame systems as well.

The ’734 patent describes many features as “preferred”
but not required. Some descriptions seem too detailed for a
general outline of a microprocessor or of a system architec-
ture. For example, the patent discusses 1,024-bit DRAM and
optical chip-to-chip interfaces, which most Cell systems
probably won’t have. (The PlayStation 2 uses Rambus mem-
ory, and Sony maintains a Rambus license.) The key features
appear to be the scalable microarchitecture, dynamically allo-
cated pipelines, mobile software cells, distributed parallel
processing, low-level security, and mechanisms for ensuring
isochronous performance. The main invention claimed by
the ’734 patent is the ability to dynamically allocate pipelines.

Examining Cell Under a Microscope
Now let’s examine the ’734 patent in more detail. Cell sup-
ports many possible implementations, as would be expected
for an architecture that spans enterprise-class servers and
hand-held clients. The basic building block is a processor ele-
ment (PE); the least powerful Cell processor would have a
single PE. The patent says a typical Cell processor might have
four PEs, while a higher-end chip might have eight, including
some PEs with specialized function units.

Figure 2 is a high-level block diagram of the most com-
mon type of PE, according to the patent. The PE has a
processor unit (PU), a DMA controller, an I/O interface to
main memory (most likely off-chip DRAM), and an array of
attached processing units (APU), all connected to an on-
chip bus. APUs are functionally equivalent to processor
cores, because each APU has its own register file, local mem-
ory, and function units, and APUs can operate independ-
ently of each other. Although the number of APUs
in a Cell processor may vary, the patent says the
“preferred” PE configuration has eight APUs.
Some PEs may have specialized APUs, such as
pixel-processing engines or 3D-graphics shaders.
The PU controls the APUs by scheduling and dis-
patching instructions and data.

APUs are not coprocessors, the patent insists,
but they don’t conform to the PowerPC architec-
ture, as we know it today. In the patent’s “preferred
embodiment”of an APU, there are 128KB of SRAM
for local memory, 128 registers (128 bits wide), four
integer units (ALU), and four floating-point units
(FPU). Other combinations of function units are
possible. As Figure 3 shows, all eight function units
in an APU appear to share the same unified register
file. In contrast, existing 32-bit PowerPC chips have
the usual RISC complement of 32 integer registers
(32 bits wide) and 32 floating-point registers (64
bits wide). A few 64-bit PowerPC chips have 64-bit
integer registers. (See MPR 10/28/02-02, “IBM
Trims Power4, Adds AltiVec.”) Even with AltiVec
extensions, the PowerPC’s vector register file is only

© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

New Patent Reveals Cell Secrets

Figure 2. A processor element (PE) is the basic building block of a Cell
processor. In this figure from the ’734 patent, a typical PE has a con-
troller unit (the processor unit, or PU), a DMA controller, a DRAM
interface, and eight attached processing units (APU). The highly capa-
ble APUs are functionally equivalent to processor cores in other mul-
ticore processors. Cell processors may have different numbers of PEs
and various configurations of APUs.

Figure 3. Inside look at an APU, the functional equivalent of a processor core. This
figure, from the ‘734 patent, illustrates what the patent calls the “preferred embod-
iment” of an APU. It has four ALUs and four FPUs, all apparently sharing the same
128-entry, 128-bit-wide register file. Note that register porting allows each group of
function units to fetch three 128-bit operands from the registers per clock cycle and
return one 128-bit result per cycle. The instruction path is 256 bits wide, implying
that an APU can fetch and execute eight 32-bit instructions per cycle—one for each
of the eight function units. Local memory (128KB of SRAM, in this configuration)
stores program code and data but isn’t a conventional fill-and-spill cache.

4

32 entries of 128 bits. (See MPR 5/11/98-01,“AltiVec Vectorizes
PowerPC.”) Perhaps the ’734 patent describes a new extension
like Intel’s SSE2, which also has 128-bit registers. Certainly, a
larger complement of wider registers would allow Cell proces-
sors to execute more SIMD instructions at the same time. The
patent suggests that APUs are optimized for SIMD processing.

In a surprising moment of specificity, the patent esti-
mates an APU’s performance: 32 billion integer operations
per second (BOPS) and 32 gigaFLOPS. Those numbers
assume the “preferred embodiment” of an APU with four
ALUs and four FPUs. However, the patent doesn’t specify
clock frequency or data types. Assuming 32-bit integer and
32-bit single-precision floating-point instructions (the most
common data types for a game program), a SIMD instruction
in each function unit could operate on four operands in a
128-bit register. Therefore, theoretical peak performance for
the eight-way APU would be 16 integer SIMD operations and
16 floating-point SIMD operations per clock cycle.

A hypothetical Cell processor with eight of these APUs
could achieve 32 BOPS and 32 gigaFLOPS at only 250MHz.
Using regular instructions instead of SIMD, it could achieve
the same performance at only 1GHz. And remember, that’s
for a Cell processor having only one PE of eight APUs. If a
typical Cell processor has four PEs, as the patent suggests,
multiply all those performance numbers by four. A higher-
end Cell processor with eight PEs could theoretically deliver
peak SIMD performance of one teraflops at a conservative clock
frequency of 1GHz. A multiprocessor system could deliver
supercomputer-class performance in a desktop-size box.

Data movement will be critical in a chip that has such
vast processing resources. According to the ’734 patent, the
preferred configuration of a PE has a 1,024-bit-wide local
bus. The bus may be implemented as a conventional on-chip
bus (e.g., IBM’s CoreConnect), a crossbar switch, or a packet-
switched network. All the PE local buses tie into a global on-
chip bus with interfaces to main memory, but the patent
doesn’t describe the memory interface. The patent does note
that a PU or APU could perform its own memory transac-
tions without help from a global bus interface unit.

Software Cells Carry Code and Data
Each PE has a PU controller for running trusted software,
such as the operating system. In addition to dispatching in-
structions and data to local APUs, the PU apparently plays a
role in routing software cells to other PEs for distributed
processing—whether the other PEs are on the same chip, on
another Cell processor in the same system, or located
remotely on a network. Presumably, the PU dispatches a soft-
ware cell to another PE when the local PE lacks enough pro-
cessing resources to handle the workload at that moment.

There must be some mechanism allowing a PU to judge
when it’s faster to outsource the execution of a software cell to
another PE instead of waiting for resources to become available
in the local PE, but the ’734 patent doesn’t discuss it. To
make distributed processing across a network practical, such a

mechanism would also need an understanding of network
transfer latencies. Because those latencies can vary greatly, dis-
patching software cells outside a system would seem impracti-
cal for tasks requiring isochronous or deterministic processing.

Inside the software cells are “apulets,” or APU applets.
Unlike Java applets and other miniapplications, apulets aren’t
necessarily self-contained programs. Apulets may have only
enough instructions and data to execute part of a program.
They appear to be more like the serialized objects in object-
oriented programming languages—packaged subroutines of
instructions and related data. PUs control apulet execution by
issuing commands through the local DMA controller. Those
commands, called APU remote procedure calls (ARPC), load
an apulet from main memory into the fast local memory of
an APU. Another ARPC, called a kick command, initiates exe-
cution. Apulets always execute in an APU’s local memory, not
directly from main memory.

Apulets are highly independent. Each has its own pro-
gram counter and stack frame. A special header in the soft-
ware cell carries critical information about the apulet, includ-
ing a unique global ID, the type of APU that can execute the
apulet, the minimum number of APUs required to execute the
apulet in a timely fashion, and the amount of memory the
apulet needs. If the apulet requires sequential execution in
multiple APUs—as might be the case for streaming-media
apulets—the header also carries the global ID of the most
recent APU to execute the apulet. Cell processors generate
global IDs at runtime by adding a date/time stamp to the ID
of the PE or APU where the apulet originated. If the apulet
must traverse a network, an outer wrapper contains the net-
work addresses (e.g., TCP/IP addresses) of the source and des-
tination PEs and APUs. There’s also a “reply-to” address—the
network address of a PE or APU that can answer queries about
the apulet and receive results of the apulet’s remote execution.

Apulets would seem to be packages of program code
and data that have no data dependencies with other apulets,
or least with apulets in other software cells. Otherwise, it’s
difficult to understand how a system could synchronize their
execution, especially if mutually dependent apulets were dis-
persed across a large network with indeterminate transfer
latencies. Imagine an apulet running on your PDA that
depends on a result coming from another apulet running on
a computer in Norway.

Instead, Cell compilers will probably concentrate data
dependencies within a single apulet or a group of apulets in a
software cell. If an apulet must execute sequentially on mul-
tiple APUs—and especially if timing is critical, as with
streaming media—the compiler will probably tag the apulet
with a limiter restricting its mobility. Lacking such limits, the
apulet might execute too remotely to satisfy the timing
requirements of the application.

Playing In the Sandbox
Java applets—unlike full-fledged Java applications—run in a
protected region of memory, called a security sandbox, that

© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

New Patent Reveals Cell Secrets

5

prevents them from inflicting intentional or unintentional
damage on other parts of the host system. For instance, a Java
applet normally can’t access memory, mass storage, peripher-
als, or network connections outside its sandbox, unless some-
one changes the security settings. The ’734 patent describes
similar sandboxes even more flexible than Java’s, because they
can be any size—large enough to enclose multiple programs
or small enough to isolate only part of a program.

Each PE in a Cell processor has its own block of shared
DRAM, but that doesn’t mean any APU in the PE can access
all the shared memory at will. Mechanisms in both the
processor and the DRAM restrict each APU or a group of
APUs to its own memory sandbox. Sandboxes have obvious
security benefits, because they limit the damage a malicious
or buggy program can wreak on a system. But sandboxes also
provide hardware-level support for protecting copyrighted
content with DRM.

For example, with today’s Windows PCs, it’s possible to
capture a screen-resolution image of a copyrighted photo-
graph by pressing the PrtScn (Print Screen) key. Windows
copies the image onto the clipboard, from which one can paste
the photograph into any image editor. Likewise, there are util-
ity programs for capturing audio and video streams from the
Internet and saving them as files, which can be burned onto
audio CDs or DVDs. All these functions rely on the ability of
the operating system or utility to freely access the
video frame buffer or other regions of memory
where the content temporarily resides. Sandboxed
memory prevents this kind of copying, because only
the program authorized to use the content can
access those regions of memory. And because Cell
implements the access controls at the hardware
level, rogue programs cannot easily subvert them.

Figure 4, from the ’734 patent, shows what the
patent calls the “preferred embodiment” of shared
memory attached to each PE of a Cell processor.
Each of the eight APUs in this PE has exclusive access
to eight banks of DRAM. Each bank is 1MB, so each
APU has 8MB, and the total shared memory is
64MB. The patent envisions the smallest addressable
location of DRAM as 1,024 bits, although it also sug-
gests an alternative configuration interleaving
512-bit blocks of memory between two banks for
faster access. Of course, the memory configuration
of a hand-held game machine would differ consider-
ably from that of a server, so the addressable mem-
ory locations and banks can be of any size. Likewise,
a sandbox assigned to an APU can be any size.

The patent describes two mechanisms for
controlling memory access: full/empty (F/E) bits
and sandbox control keys. F/E bits maintain mem-
ory coherency; control keys enforce access privi-
leges. Each addressable memory location (1,024 bits
of DRAM in the “preferred embodiment”) has an
entry in a lookup table stored in memory. If the F/E

bit for a memory location is set, the data at that location is cur-
rent. If the F/E bit for a memory location is cleared, the data is
currently in use by an APU, so it’s unavailable to other APUs.
Additional entries in the lookup table can store the ID of the
APU requesting the data and the address in the APU’s local
memory, where the data should be copied when it’s available.
If an APU requests data from a memory location whose F/E
bit is set, the lookup table stores the APU’s ID and the local
memory address until the F/E bit is cleared. This mechanism
maintains data coherency in the PE’s shared memory.

Another lookup table in DRAM stores a “busy bit” for
each memory address in an APU’s local memory. If the busy
bit for a particular memory location is set, that location is
available only for specific data retrieved from DRAM. If the
busy bit is cleared, the associated memory location in local
storage can hold any data fetched from DRAM. This mecha-
nism is similar to cache locking—it allows a program to
reserve blocks of local memory for specific purposes. For
example, an APU could reserve enough local memory to
decode a media stream, ensuring that other data fetched from
memory won’t crowd into the “busy” memory block.

Controlling Access to Sandboxes
According to the ’734 patent, the PU and DMA controller of
each PE jointly supervise access to the sandboxes assigned to

© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

New Patent Reveals Cell Secrets

Figure 4. The shared DRAM attached to each PE of a Cell processor is divided into
protected regions of memory called sandboxes. Each APU has exclusive access to its
own sandbox, which strengthens system security and supports DRM for copyrighted
data. Sandboxes can be any size—part of a bank of DRAM, or multiple banks of
DRAM. The ’734 patent suggests that shared memory for a typical PE might have 64
one-megabyte banks of 1,024-bit addressable DRAM, but actual configurations will
vary, according to the type of system. Source: U.S. patent 6,809,734

6

the PE. The PU builds and maintains a control table with
entries for each APU ID, a control key for each APU, and a
key mask for each control key. For efficiency, the PU will
probably store the control table in fast SRAM inside the DMA
controller, not in the PU itself, because every main-memory
access requires a control-table lookup.

In DRAM, another lookup table stores a memory-
access key for every addressable location in main memory.
This sandbox table is separate from the previously described
DRAM lookup table that stores F/E bits for memory
coherency. When an APU issues a memory command to the
DMA controller, the controller compares the APU’s key in
the control-lookup table to the memory-access key in the
sandbox table. If the keys match, the APU can access the tar-
get memory location. Otherwise, the processor returns a
memory exception, which the operating system can handle
appropriately.

For added flexibility, the key masks stored in the con-
trol table allow wild-card matching. When a bit in the mask

is set, the corresponding bit position in the access keys can be
either 0 or 1. For example, if the sandbox key for a particu-
lar memory location is 1010, and the key mask is 0001, an
APU can access that memory location with a key of 1010 or
1011. If the key mask is 0000, the APU’s key must match the
sandbox key exactly.

If the final Cell architecture conforms to the descriptions
in the ’734 patent, it’s hard to avoid the conclusion that Cell
processors will have an extraordinarily secure but cumber-
some memory model. For each main-memory access, the
processor would have to consult four lookup tables: the
memory-coherency table, to see if the F/E bit for the target
memory location is set or cleared; the “busy bit” table, to see if
the destination in local memory has permission to read data
from the target location in main memory; the key-control
table, to find the control key and mask for the target memory
location; and the sandbox table, to match the control key and
mask with the sandbox key. Three of those tables are in
DRAM, which implies slow off-chip memory references; the

other table is in the DMA controller’s SRAM. In some
cases, the delays caused by the table lookups might eat
more clock cycles than reading or writing the actual
data. The patent hints that some keys might unlock
multiple memory locations or sandboxes, perhaps
granting blanket permission for a rapid series of
accesses, within certain bounds.

In addition to the overhead of the memory
model, there’s the extra baggage that software cells
must carry during their journeys, either on chip or off
chip. Apulets are the payload, but a software cell must
also carry various ID numbers, program counters, and
other state information for each apulet. This baggage is
separate from any wrappers required for higher-level
bus or network protocols. Figure 5 shows the format of
a software cell.

The patent doesn’t specify sizes for all the data
structures in a software cell. Payloads, of course, will
vary widely, depending on their function. Overhead is
probably a few hundred bytes or perhaps a few kilo-
bytes, depending on how much state information trav-
els with a cell; the patent refers briefly to stack frames
and other data structures. To allow distributed process-
ing anywhere on a network, a cell would have to carry
enough state information to be self-sufficient. Cell
processors will probably have special logic for parsing
the headers and metadata in software cells, much as
network processors have special logic for parsing
packet headers.

Dynamically Reconfigurable Pipelines
The ’734 patent claims the invention of dynamically
reconfigurable execution pipelines. Hypothetically, a
Cell processor can rearrange these pipelines at run time
in response to software demands. Other processors have
a fixed number of fixed-length pipelines, although the

© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

New Patent Reveals Cell Secrets

Figure 5. The Cell architecture’s “software cells” have a complex format, as this
figure from the ’734 patent illustrates. At left is a higher-level view of the cell
with a packet wrapper (denoted by bracket 2304), which allows it to travel any-
where on a network of Cell systems. At right is an expanded view of the cell’s
inner packet (denoted by bracket 2306). The inner packet contains a header, the
cell’s unique global ID, the number of APUs required to execute the apulets in
the cell’s payload, the size of the security sandbox allocated for the apulets, the
global ID of the previous cell in this code sequence, a group of virtual IDs and
memory addresses associated with APU local memory, “kick” commands to ini-
tiate apulet execution on appropriate APUs, program counters for the apulets,
and finally the apulets themselves, with their program instructions and data.

7

number of pipe stages can vary according to the type of data
being processed. (For example, FPU pipelines are usually
deeper than ALU pipelines, because they require more logic.)
From our reading of the ’734 patent, it appears a Cell proces-
sor can dynamically allocate one or more APUs to form a tem-
porary pipeline dedicated to executing a specific instruction
stream. That instruction stream may be a program or part of
a program.

Curiously, the patent describes a mechanism for auto-
matically forwarding data from one APU to another by using
the DMA controller and main memory. This is a clue that
the reconfigurable pipelines are larger in scope than the
instruction pipelines commonly associated with micro-
processors. Normally, a processor uses latched registers to
forward data from one pipe stage to another. Forwarding
data through memory—especially off-chip main memory—
would be a ridiculously slow detour. Therefore, we think the
reconfigurable pipelines the patent describes aren’t the same
as conventional microprocessor pipelines. More likely, they
are ad hoc groups of APUs (with their function units
pipelined in the conventional sense), organized on the fly to
handle certain tasks.

In another departure from convention, Cell can dedicate
a pipeline to a single task, locking out all other tasks. Other
microprocessors always make all their processing resources
available to whatever task is actively executing. For instance, a
three-way superscalar processor always allows the task in the
active context to use all three pipelines, along with their asso-
ciated function units and registers. If a higher-priority task
needs CPU time, an interrupt triggers a context switch, which
flushes the current task out of the pipelines and transfers con-
trol to the new task. The new task enjoys the same exclusive
access to the pipelines and resources that the previous task
did. A recent variation of this model is simultaneous multi-
threading, such as Intel’s Hyper-Threading, which allows
instruction streams from two or more contexts to simultane-
ously share a pipeline.

Cell processors appear to follow a radically different
model. At run time, in response to software demands, the
processor can dedicate one or more APUs to a particular task.
This “pipeline” is the high-level über pipeline of pipelined
function units (the APUs). The ’734 patent says the pipeline
remains dedicated to its task even when it’s not busy. During
idle periods, the pipeline enters what the patent calls a
“reserved state,” preventing other tasks from preempting its
resources. This model guarantees adequate processing
resources will always be available to a particular task at a
moment’s notice.

MPR is unaware of any other microprocessor that can
dedicate its processing resources to a particular task in this
way. The closest example might be cache locking, which fences
off part of an L1 cache to prevent another task (or another
routine within the same task) from flushing out vital instruc-
tions and data. However, other processors cannot reserve their
pipelines or function units for a given task, as Cell can.

In the past, locking down part of a processor in this
way was considered wasteful and inefficient, because those
resources would be unavailable to other tasks, even when
the resources weren’t busy. Cell is designed for an era in
which microprocessors are so rich in resources, they can
afford to dedicate some of their wealth to running the most
important tasks.

Absolute Timers and Spontaneous NOPs
Several features of the Cell architecture are designed to guar-
antee performance to programs that need it. Among those fea-
tures are the reconfigurable pipelines, the ability to dedicate
processing resources to specific tasks, and the option of dis-
tributing software cells to other Cell processors. These are par-
ticularly useful features for a processor intended to handle
streaming media over broadband networks. The ’734 patent
specifically mentions MPEG, ATRAC (Sony’s proprietary

© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

New Patent Reveals Cell Secrets

Figure 6. This figure from the ’734 patent illustrates the way a slower
Cell processor (top) and a faster Cell processor (bottom) can allocate
“time budgets” in their APUs to execute time-critical tasks in the same
amount of real time. For example, APU0 in the faster processor (indi-
cated by callout number 2808) spends less time in busy mode and
more time in standby mode than does APU0 in the slower processor
(indicated by callout number 2802). An absolute timer running faster
than the processor’s main clock provides a consistent reference signal
for synchronization. As noted at the bottom of the figure, this feature
would allow future Cell processors to run time-critical software writ-
ten for slower Cell processors—especially useful for keeping games
playable on future generations of game machines.

8

audio codec), and TCP/IP. Audio and video streams flowing
over networks need isochronous execution to avoid hiccups,
and gamers expect smooth graphics.

Two additional features of Cell also guarantee certain
levels of performance: absolute timers and automatically gen-
erated NOPs. Interestingly, the patent describes both features
in the context of reducing performance. Because different Cell
processors can have vastly different capabilities, they need a
way to execute programs written for slower Cell processors
without running the programs too quickly to be usable. This
is particularly important for games. It may also allow future
generations of Cell-based game machines and other systems
to run software written for earlier generations.

Absolute timers sound much like real-time clocks,
because they provide a clock reference independent of the
clock signal driving the processor’s logic. One difference,
according to the patent, is that absolute timers provide a ref-
erence signal faster than the processor’s fastest clock. A pro-
gram can use the accelerated heartbeat of an absolute timer
to create “time budgets” for tasks having critical execution
times. APUs can synchronize execution to the absolute timer

by allocating clock cycles to busy modes and standby modes
in any combination that satisfies the time budget. Further-
more, each APU in a PE can synchronize execution inde-
pendently of other APUs. Figure 6 shows how two different
Cell processors can juggle their time budgets to guarantee the
same level of performance to time-critical tasks.

The ’734 patent describes a novel alternative method
for synchronizing execution if absolute timers aren’t avail-
able, or perhaps if the software doesn’t specify time budgets.
In particular, the patent says this alternative method is use-
ful for coordinating parallel execution on a Cell processor
running at a faster clock speed than the processor for which
the programmer wrote the software. At run time, the PU
controller or a designated APU can analyze an instruction
stream and automatically insert NOP instructions. The
NOPs consume enough CPU cycles to reduce execution
speed to the desired rate.

Of course, programmers have been writing do-nothing
timing loops for years, but this is the first time we’ve seen a
microprocessor that can automatically modify an instruc-
tion stream at run time to deliberately waste clock cycles.
The closest comparison might be the branch-delay slots in
many ISAs, which sometimes mandate a NOP immediately
after a branch instruction, just to give the processor enough
time to calculate the branch-target address. But in those
cases, it’s the programmer or compiler that pads the code
with NOPs at design time—quite different from a proces-
sor that inserts its own NOPs at runtime. The Cell archi-
tecture introduces a whole new meaning to the term “self-
modifying code.”

Don’t Jump to Conclusions
It’s worthwhile repeating that IBM, Sony, and Toshiba filed
the ’734 patent almost four years ago, and much may have
changed since then. Also, the patent’s numerous references
to a “preferred embodiment” of a Cell processor may be lit-
tle more than a CPU architect’s pipe dream. MPR considers
the patent an outline of a general architecture, not a blue-
print of a specific microprocessor or microarchitecture.

Nevertheless, the patent contains more information
about Cell than everything else leaked in the past four years
put together. The unifying theme appears to be the software
cells, with their payloads of apulets and freedom to roam far
and wide. It’s an innovation that now seems inevitable. With
search engines like Google, it’s sometimes faster to find
something on a web server in another hemisphere than to
locate a file on one’s own hard drive. Cell is designed to har-
ness the ubiquity and speed of broadband networks for
everyday distributed processing. Wide-area clustering and
grid computing, which today require special software and a
great deal of planning, will probably be second nature to
Cell systems.

Another vital part of Cell is security, implemented at
the lowest hardware level. This, too, is inevitable. It’s absurd
that a moderately knowledgeable teenage hacker can disrupt

© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

New Patent Reveals Cell Secrets

F o r M o r e I n f o r m a t i o n

U.S. patents 6,809,734 and 6,526,491 are available from
the U.S. Patent and Trademark Office website. Enter the
patent number in the search field on this web page:

http://164.195.100.11/netahtml/srchnum.htm
Four similar U.S. patent applications filed by the Cell

partners are pending. The applications are number
20030229765, “Memory Protection System and Method
for Computer Architecture for Broadband Networks,” filed
on December 11, 2003; number 20020156993, “Process-
ing Modules for Computer Architecture for Broadband Net-
works,” filed on October 24, 2002; number 20020138707,
“System and Method for Data Synchronization for a Com-
puter Architecture for Broadband Networks,” filed on Sep-
tember 26, 2002; and number 20020138637, “Computer
Architecture and Software Cells for Broadband Networks,”
filed on September 26, 2002.

IBM is scheduled to present several papers about
Cell at the International Solid-State Circuits Conference
(ISSCC) in San Francisco on February 6–10, 2005. The
advance program is available from the ISSCC website:

www.isscc.org/isscc/2005/ap/
IBM’s website has a brief description of the Cell project:
www-1.ibm.com/businesscenter/venturedeve

lopment/us/en/featurearticle/gcl_xmlid/8649/nav_id/
emerging

Sony’s website has an announcement of Cell-based
workstations:

www.us.playstation.com/pressreleases.aspx?id=
208&op=print

9

the networks of multinational corporations, costing mil-
lions of dollars in lost productivity. Only an architecture
secure from the ground up can offer the protection sorely
needed. Everyone is working on the security problem, so
nothing about Cell’s solution is particularly surprising—
but it’s certainly welcome. Less welcome, for some users,
will be the equally tight DRM inherent in any system-wide
security scheme. Copyrighted content will be more difficult
to share, but this, too, seems inevitable.

A common vein running through the Cell architecture is
the lavish use of resources. The smallest Cell processor the
patent envisions would have one PE with eight APUs, each
with four ALUs and four FPUs. That’s like an eight-core mul-
tiprocessor chip with 64 superscalar pipelines. A “typical” Cell
chip with four PEs would be like a 32-core, 256-way processor.
And the patent mentions much larger Cell processors for
workstations and servers.

Consider Cell’s practice of temporarily reserving pipe-
lines for certain tasks. It’s the opposite of Hyper-Threading,
which strives to squeeze out every drop of performance by
always sharing the processor’s resources. Think about the
overhead of Cell’s security and memory-access models. Look
at the extra baggage of metadata carried by every software cell.
And don’t forget the time-budget wait states and sponta-
neously generated NOPs that burn unwanted CPU cycles as if
they were excess calories. The Cell architecture described in
the ’734 patent is designed on a grand scale for an age of big
transistor budgets. If it is to have any future in low-power
handheld systems, that extravagance must be pared back.

At Fall Processor Forum in October, a running joke
throughout the conference was a question posed repeatedly
to chip designers: “What will you do with a billion transis-
tors?” Everyone had a different answer. Now we have strong
hints of the answer from IBM, Sony, and Toshiba: Cell.

© I N - S T A T J A N U A R Y 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

New Patent Reveals Cell Secrets

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

