
© I N - S T A T M A Y 2 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

file could double or triple the silicon area of a small embed-
ded RISC processor.

At last week’s Spring Processor Forum, ARC unveiled
FPX—Floating-Point eXtensions—which significantly im-
prove on the performance of a software-emulation library
while requiring fewer gates than a complete FPU. ARC’s solu-
tion is remarkably similar to the optional floating-point ex-
tensions for MicroBlaze v4.00 that Xilinx announced at the
same session of SPF. One important difference is that ARC’s
extensions support both single- and double-precision oper-
ations, whereas the Xilinx extensions are limited to single-
precision operations. (See MPR 5/17/05-02, “MicroBlaze
Can Float.”)

FPX is an extra-cost option for the ARC 600 and ARC
700, the company’s licensable intellectual-property (IP)
processor cores. The ARC 600 is designed primarily for low-
power, deeply embedded applications that need 32-bit pro-
cessing. (See MPR 12/15/03-01, “ARC Alters Trajectory.”)
The ARC 700, the company’s flagship product, is a more
powerful processor for higher-end embedded systems, yet it
still consumes relatively little power. (See MPR 6/21/04-01,
“ARC 700 Secrets Revealed.”) Both cores are highly config-
urable, allowing users to add custom instructions, DSP
extensions, registers, and other application-specific fea-
tures. FPX is simply another extension package available in
ARChitect, the company’s graphical configuration tool.

Single-precision FPX is available for licensing now.
ARC says the double-precision extensions will be available

early this summer. Both packages are supported by ARC’s
MetaWare development tools, including the C/C++ com-
piler, assembler, debugger, instruction-set simulator, and
cycle-accurate simulator. Two new compiler flags (–Xspfp for
single precision and –Xdpfp for double precision) automati-
cally invoke the new instructions—no assembly required.

Extensions Derived From Application Profiling
ARC’s engineering team in Elstree, England, began the proj-
ect by profiling some real-world embedded applications that
use ARC’s floating-point software library. In particular, ARC
profiled some customer programs that calculate coordinates
for Global Positioning Systems (GPS). Performance profil-
ing is an important first step in defining any custom exten-
sions for a configurable processor, and ARC’s MetaWare
development tools include a sophisticated profiler utility.
These tests revealed that only two function calls—addition
and multiplication—accounted for 60% of the clock cycles
in math-intensive floating-point code. Division accounted
for 14% of the cycles, and exponentiation was responsible
for 5%. All other types of function calls were less significant.

After identifying the low-hanging fruit, ARC decided to
pluck it by designing a few extension instructions that would
accelerate basic floating-point operations without requiring a
full-blown FPU. As a result, FPX is not an FPU coprocessor
with its own instruction pipeline and register file. The new
instructions share the same pipeline with integer instructions
and use the same general-purpose integer registers. (To support

FLOAT WITHOUT BLOAT
ARC Adds Economical Floating Point to Customizable Processor Cores

By Tom R. Halfhi l l {5/23/05-02}

For years, ARC International has considered adding an optional floating-point unit (FPU)

to its 32-bit customizable processor cores, but it has always been deterred by the cost of the

additional logic gates and power. A fully equipped FPU with its own pipeline and register

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

double-precision instructions, FPX adds four auxiliary regis-
ters.) In all, FPX adds only seven new instructions, not count-
ing variations of arithmetic instructions that specify different
sources for operands and so forth. ARC’s conservative
approach saves thousands of gates, keeps the processor core
small and power efficient, and removes the need to communi-
cate with a coprocessor.

In those respects, ARC is even thriftier than Xilinx,
which recently added 10 floating-point instructions to its syn-
thesizable 32-bit processor core, MicroBlaze v4.00. Both com-
panies chose to keep their RISC cores small by allowing inte-
ger and floating-point instructions to share the same pipeline
and registers. Of course, the trade-off is performance. Float-
ing-point instructions, which typically have longer execution
latencies than integer instructions have, can stall the uniscalar
pipeline in these processors, preventing even nondependent
integer instructions from bypassing and executing. Also, the
floating-point operands can occupy the integer registers like
unwelcome squatters, sometimes creating resource dependen-
cies that impair performance. Nevertheless, we think ARC and
Xilinx made worthwhile trade-offs, because their new instruc-
tions are much faster than software floating-point routines
and require less silicon than a full FPU might have.

Despite adding only seven new instructions, FPX sup-
ports single- and double-precision math. The SP FPX package
has three instructions for 32-bit addition, subtraction, and
multiplication. The DP FPX package has four instructions:
64-bit versions of the same basic arithmetic operations plus a
special register-copy instruction. Each package is optional, so
customers can add only the extensions they need by clicking a
few buttons in ARChitect. Table 1 lists all the new instructions
with descriptions, execution latencies, and comments.

All the new instructions are straightforward and self-
explanatory, save one: dexcl, a special register-exchange
instruction. FPX needs dexcl because ARC didn’t add any
64-bit-wide registers to the processor for double-precision
operands or results. Instead, the 64-bit values occupy pairs
of existing 32-bit integer registers and pairs of new 32-bit

auxiliary registers. ARC’s clever workaround conserves gates
but requires some explanation.

By default, an ARC processor has a 32-entry file of 32-bit
integer registers, also known as core registers. Auxiliary regis-
ters are optional. Users can add several core registers and a vir-
tually unlimited number of 32-bit auxiliary registers, which
programs can access with special single-cycle load/store in-
structions. The DP FPX package defines four new auxiliary
registers for storing 64-bit input operands and results.

A double-precision instruction that needs two 64-bit
input operands retrieves one of them from a pair of 32-bit
core registers and the other from a pair of new 32-bit auxil-
iary registers. The dexcl instruction copies two core registers
to a pair of auxiliary registers in a single-cycle operation,
forming one of the 64-bit operands. (If a previous double-
precision instruction leaves its result in a pair of auxiliary
registers, and the following arithmetic instruction uses that
result as an input operand, the program doesn’t need dexcl
for this purpose.) An arithmetic instruction always stores its
64-bit result in a pair of auxiliary registers and also copies
the most significant 32 bits of the result to a destination core
register. If the program needs to manipulate the entire 64-
bit result using core registers, the dexcl instruction also
copies the lower 32 bits of the result to a core register.

Floating-Point Performance Is Much Improved
FPX complies with parts of the IEEE 754 floating-point
standard that are most useful in deeply embedded applica-
tions. The new instructions handle signed-zero and infinity
operations, denormalized numbers, and “quiet” not-a-
number (NaN) exceptions. They also support the IEEE 754
round-to-nearest mode but not the up- or down-rounding
modes. Signaling NaNs are handled as quiet NaNs, not as
exceptions, because FPX is designed to work with both the
ARC 600 and ARC 700 processors, and the ARC 600 doesn’t
support precise exceptions. The processor calls the usual
floating-point software libraries to handle any situations
that FPX doesn’t support in hardware.

Performance improvements with
FPX can be significant. The latency column
in Table 1 shows the number of clock cycles
each instruction can save when substituted
for equivalent functions in the software
floating-point library. After profiling the
library and some real-world applications
from three customers, ARC found that the
SP FPX package improved floating-point
performance by an average factor of 2.27×.
In the same tests, the DP FPX package
accelerated performance by 3× to 7×. Of
course, the actual speedup for a particular
application depends on which operations it
performs and how much time it spends in
those routines. Figure 1 compares the
number of clock cycles required for various

© I N - S T A T M A Y 2 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

Float Without Bloat

Instruction Description Latency Notes

fadd FP add 3 cycles Replaces 70-cycle software library function
fmul FP multiply 3 cycles Replaces 40-cycle software library function
fsub FP subtract 3 cycles Replaces 70-cycle software library function

daddh FP add 6 cycles* Replaces 95-cycle software library function
Copy two 32-bit core registers to auxiliary registers

to form a 64-bit input operand, and copy lower
32 bits of result from an auxiliary register to a

destination register in the core register file
dmulh FP multiply 4 cycles* Replaces 60-cycle software library function
dsubh FP subtract 4 cycles* Replaces 95-cycle software library function

Single-Precision Floating Point

Double-Precision Floating Point

dexcl Copy registers 1 cycle

Table 1. ARC’s FPX has separate packages of floating-point extensions for single- and double-
precision operations. In all, there are only seven new instructions. The single-precision instruc-
tions require three clock cycles to execute but can be pipelined for single-cycle throughput.
*In ARC’s preliminary design, double-precision instructions execute in four cycles.

3

single-precision operations using FPX and the
software floating-point library.

What is the price for these improvements?
The SP FPX package requires about 12,000 to
14,000 NAND-equivalent gates, and the DP FPX
package requires about 24,000 to 30,000 gates.
Together, they would require 44,000 gates, but
ARC says no customers so far have expressed
interest in using both packages in a single proces-
sor. The DP package is larger both because of the
extra complexity of the instructions and because
of the auxiliary registers needed for 64-bit data.

Putting these gate counts in perspective: the
base configuration of the ARC 600 (excluding
caches and 32-bit integer multiplier) is about
27,000 gates, whereas the base configuration of
the ARC 700 is about 100,000 gates. Although
adding the DP FPX package to the ARC 600
would double the base size of the core, the infla-
tion is less significant in a typical processor con-
figuration, which would probably include caches
and other extensions. In actual silicon using a
deep-submicron fabrication process, the extra size
is negligible.

Customers needing more floating-point performance
than FPX provides still have the option of creating addi-
tional extensions with ARC’s Extension Instruction
Automation (EIA) tools. Indeed, ARC created FPX using
those tools. For a quick fix, however, FPX provides signifi-
cantly better performance than the software libraries do—
without busting the budgets for silicon or power.

Competitors Have Stronger FPUs
ARC’s closest competitors for licensable 32-bit embedded
processors are ARM, MIPS Technologies, and Tensilica. All

have FPUs that outclass ARC’s FPX in some ways, although
their FPUs tend to be larger and consume more power. One
exception is Tensilica’s single-precision FPU, which is scarcely
larger than ARC’s more limited single-precision extensions.

Cambridge Consultants, which introduced a new
licensable 32-bit processor core at SPF, doesn’t currently
offer a hardware floating-point option. Altera and Xilinx
have licensable 32-bit processors, but their cores are prima-
rily intended for FPGAs, not for conventional SoCs, and
only the new Xilinx MicroBlaze v4.00 has floating-point
logic. Table 2 summarizes the options available from ARC,
ARM, MIPS, and Tensilica.

© I N - S T A T M A Y 2 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

Float Without Bloat

Figure 1. In ARC’s tests with a customer’s GPS application, floating-point addition and
multiplication showed the greatest improvements when using single-precision FPX
instructions instead of software routines. In this test, there was no improvement for
division (FPX lacks division instructions) and only scant improvements with other oper-
ations. (“Func2” is an undisclosed application-specific function in the customer’s pro-
gram.) Overall, the code using FPX instructions ran more than twice as fast.

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0
Add TOTALMul Division Power Func2 Compare 37

Others

Cycles with FPX

Cycles without FPX

ARC ARM ARM ARM MIPS MIPS Tensilica
Feature FPX VFP9-S VFP10 / VFP11 VFPv3 MIPS32 MIPS64 Xtensa FPU

ARC 600, ARM10 family Xtensa III,
ARC 700 ARM11 family IV, V, LX

Synthesizable Yes Yes VFP11 n/a Yes 5Kf Yes
Hard Macro — — VFP10 n/a — 20Kc —
FP Precision 32 or 64 bits 32 / 64 bits 32 / 64 bits 32 / 64 bits 32 / 64 bits 32 / 64 bits 32 bits
FP Pipeline — Yes Yes Yes Yes Yes Yes

32 x 32 bits 32 x 32 bits 32 x 64 bits 32 x 32 bits 32 x 64 bits
or 16 x 64 bits or 16 x 64 bits or 128 x 16 bits or 16 x 64 bits or 64 x 32 bits †

12KG–14KG (SP) 1.16mm2 0.13µ ~4.5mm2

24KG–30KG (DP) (VFP10) (CPU + FPU)
Peak SP
MFLOPS / MHz

Now (SP)
Summer (DP)

Size

Now Now NowAvailability Now Now Now

100KG–130KG

FP Registers 2 x 64 bits* 16 x 32 bits

CPU Cores ARM9 family MIPS32 24Kf MIPS64 5Kf, 20Kc

n/a n/a

ARM11 family

17.4KG–25KG

1.0 1.3 2.0 n/a n/a n/a 2.0

Table 2. With ARC’s introduction of FPX, all the major processor-IP vendors now offer floating-point options for their embedded RISC cores. How-
ever, ARC’s competitors have FPUs with independent pipelines and register files, whereas FPX instructions share the existing integer pipeline and
registers. Consequently, ARC’s performance suffers in comparison, but its single-precision extensions require fewer gates than do competing solu-
tions. *FPX adds four 32-bit auxiliary registers; each pair of registers can hold a 64-bit operand or result. †The MIPS64 FPU can pack pairs of 32-
bit values into 64-bit registers for parallel operations. n/a: information not available.

4

ARM’s current FPUs are optional coprocessors based on
the VFPv2 (Vector Floating-Point version 2) architecture, and
ARM recently announced VFPv3 for future implementations.
The existing VFPv2 supports single- and double-precision
math, fused MAC (FMAC) instructions, and SIMD instruc-
tions for applications requiring high data throughput, such as
3D graphics. These FPUs are independently pipelined and
have their own register files, which are visible to programmers
as 32 single-precision or 16 double-precision registers. The
FPUs also support the most important IEEE 754 standards in
hardware, although some functions require library calls.

VFP9-S is a synthesizable FPU for ARM9E processors. It
can execute a basic floating-point operation every two cycles.
However, by using its parallel load/store instructions, vector-
processing mode, and division/square-root engine, the VFP9-
S can deliver a peak 1.3MFLOPS per megahertz. Depending
on the way it’s optimized during synthesis, VFP9-S requires
100,000 to 130,000 gates, making it quite a bit larger than
ARC’s FPX, although it’s also more capable.

VFP10 is a hard macro for ARM10E processors. It has
the same capabilities as the VFP9-S, but it can issue a VFP
instruction on each clock cycle and transfer data over dual
64-bit load and store buses, giving it peak performance of
2MFLOPS per megahertz. VFP10 occupies about the same
silicon area as VFP9-S does in the same fabrication process,
because it’s an optimized hard macro instead of a synthesiz-
able model. ARM estimates VFP10 occupies about 1.16mm2

in TSMC’s 0.13-micron LV process.
VFP11 is a synthesizable FPU that brings all the fea-

tures of VFPv2 to ARM11 processors. It’s designed to run at
the same clock speeds as ARM11 cores, and it provides the
same performance as VFP10.

Less is known about ARM’s latest floating-point archi-
tecture, VFPv3, announced last year for the ARMv7 architec-
ture. It doubles the size of the register file, with 32 double-
precision registers also visible as 16 128-bit registers. VFPv3
has some configurable fixed-point conversion instructions,

and user exceptions are optional—the FPU can run trap-
free at top speed, providing the IEEE-specified results for
exceptional conditions. FPUs based on VFPv3 will probably
claim more silicon than ARM’s existing FPUs, if only
because of the larger register file.

MIPS processors offer powerful floating-point capa-
bilities, too—not surprising for a seminal RISC architecture
originally designed for workstations. FPUs supporting sin-
gle- and double-precision floating point are optional in
both the MIPS32 and MIPS64 embedded-processor archi-
tectures. These FPUs have dedicated pipelines, registers, and
condition codes. In MIPS32, the FPU register file is visible
as 32 32-bit registers or 16 64-bit registers. In MIPS64, the
FPU has 32 64-bit registers and optional single-precision
SIMD instructions that pack two 32-bit operands into a sin-
gle 64-bit register. FPUs are standard equipment in the syn-
thesizable MIPS32 24Kf and MIPS64 5Kf processors as well
as in the hard-core MIPS64 20Kc.

Tensilica’s optional FPU, introduced in 2000 for
Xtensa III, is also available for the latest Xtensa LX.
Although this FPU is limited to single precision, it’s a true
coprocessor that has its own pipeline and 16-entry register
file. It adds 34 instructions, including special load/store
instructions, plus some offset and indexed address-update
modes. Most arithmetic operations (addition, subtraction,
multiplication, multiply-add, and multiply-subtract) have
four-cycle latencies—one cycle longer than ARC’s single-
precision FPX instructions. Loads and data-conversion
instructions execute in two cycles, and moves and compares
execute in one cycle. By pipelining the fused instructions,
Tensilica’s FPU can sustain 2MFLOPS per megahertz.
Remarkably, this pipelined FPU with its own register file adds
only 17,400–25,000 gates to the processor core, depending on
whether it’s synthesized for area or speed.

FPX Achieves ARC’s Goals
Although FPX is less capable than some competing FPUs, it
meets ARC’s goal of float without bloat—improving floating-
point performance on the ARC 600 and ARC 700 without
sinking the diminutive cores under a burden of extra silicon.
Some ARC 600 users may pause before clicking on the FPX
option in ARChitect, but it’s almost a no-brainer for the ARC
700 in applications requiring faster performance. In addition,
FPX provides a head start for customers developing their own
floating-point extensions for a specific application.

Another important feature easily overlooked is that the
SP and DP FPX packages are independent—customers can
add only the level of floating-point precision they need. With
other architectures, the floating-point extensions are either
limited to single precision or include both single precision and
double precision, inflating the gate count. ARC’s rolling stone
gathers no CMOS.

© I N - S T A T M A Y 2 3 , 2 0 0 5 M I C R O P R O C E S S O R R E P O R T

Float Without Bloat

P r i c e & Av a i l a b i l i t y

ARC’s FPX (Floating-Point eXtensions) for the ARC 600 and
ARC 700 processors are synthesizable Verilog models. The
single-precision FPX package is available now; the double-
precision extensions are scheduled for release early this
summer. Both extension packages are extra-cost options in
the ARChitect-2 graphical processor-configuration tool
included with ARC processors. ARC hasn’t publicly dis-
closed the licensing fees for FPX. For more information, see
www.arc.com/newsandevents/PressRelease.html?
id=197.

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MDRonline.com

