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consumer gadgets must be able to handle audio and video
as adroitly as Jobs handles the press.

Hence the rush to introduce new video processors and
to modify existing CPU architectures for the growing
demands of media processing. At the recent Fall Processor
Forum in San Jose, both ARC International and Tensilica
disclosed new audio/video extensions for their configurable
processor cores. In the same session, German startup
Videantis introduced a second-generation core for synthe-
sizable video coprocessors. (See MPR 11/7/05-01, “Videantis
Chases Digital Video.”) And two weeks later, Royal Philips
Electronics announced the first low-power mobile processor
core in its 11-year-old TriMedia family—with new instruc-
tions for video.

Chief architect Nigel Topham presented ARC’s new
SIMD extensions at FPF. The extensions are an extra-cost
option for the ARC 700 family of 32-bit processor cores,
which are licensable, synthesizable, and user configurable.
(See MPR 6/21/04-01, “ARC 700 Secrets Revealed.”) Specif-
ically, ARC offers the SIMD extensions for the ARC 710D,
725D, and 750D—three preconfigured cores in the ARC
700 family that allow designers to make additional configu-
ration changes if needed. (See MPR 3/14/05-02, “ARC’s Pre-
configured Cores.”) Although these are ARC’s most power-
ful processors, they’re suitable for mobile applications.
When fabricated in a low-power 0.13-micron CMOS
process, even the high-end ARC 750D consumes only about
0.13mW per megahertz, or about 69mW at its maximum

worst-case clock frequency of 533MHz. That’s less power
than an ARM1136-series core.

When optimized for speed, the SIMD extensions will
enlarge a 118,000-gate ARC 750D by about 150,000 gates
(excluding memories), and by fewer gates when optimized
for area. Either way, that isn’t much silicon for the addi-
tional features. The extension package includes 104 new
instructions for audio/video processing; configurable local
memories, an independently pipelined SIMD unit, a
machine-level macro instruction that initiates complex
SIMD operations in parallel with regular instructions, and
a smart DMA engine that can manage memory transfers for
SIMD instructions in the background. In effect, the exten-
sions turn the ARC 700 into a superscalar processor capable
of sustaining two instructions per clock cycle—without sig-
nificantly altering the existing uniscalar instruction
pipeline, and without requiring the additional control
structures of true superscalar pipelines.

For now, at least, ARC isn’t licensing the SIMD exten-
sions separately. Instead, ARC will license them as parts of
larger extension packages released later this year. Those
packages are the ARCvideo Subsystem and the ARCmedia
Subsystem. Another licensable package in this collection is
the ARCsound Subsystem, which ARC shipped last year. All
these packages are part of an umbrella product called the
ARC Multimedia Subsystem. Next year, ARC plans to intro-
duce additional processor cores that will be compatible with
these subsystems. ARC designed the extensions with both
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single- and multicore processing in mind, so we expect to see
some new multicore-ready processors from ARC in 2006.

Decoupled SIMD Unit Enables Parallelism
The SIMD package extends the ARC 700 family’s ARCompact
instruction-set architecture (ISA) for data-level parallelism.
ARCompact consists mostly of 32-bit RISC instructions, but
it also has a subset of 16-bit instructions for greater code den-
sity. (See the sidebar,“ARCompact: An Elegant 16/32-Bit ISA,”
in MPR 2/18/03-06, “Soft Cores Gain Ground.”) All the new
SIMD instructions are 32 bits long. However, they can per-
form 128-bit vector operations on multiple datatypes com-
mon in audio/video processing: 4 × 32 bits, 8 × 16 bits, and
16 × 8 bits. When manipulating 8-bit values, the SIMD
instructions can execute 16 operations per clock cycle.

To accommodate the new datatypes, the SIMD exten-
sions add several new registers to the ARCompact ISA. All
are independent of the existing general-purpose registers.
ARC has allocated enough address bits for up to 64 new vec-
tor registers, each 128 bits wide, but this implementation has
only 24 vector registers (vr00–vr23), which ARC deems suffi-
cient for the target applications. In addition, the SIMD exten-
sions add eight 16-bit-wide registers (i0–i7) and a 320-bit-wide
vector accumulator. The 16-bit registers are for scalar data-
types and memory addresses, and they actually occupy the
same physical space as the first vector register (vr00). The
vector accumulator can hold eight values, each 32 bits or 40
bits long. Depending on the type of instruction, the vector
accumulator may hold a third operand and/or the result of
a SIMD operation.

ARC’s SIMD extensions may not seem much different
from those in many other CPU architectures. However, ARC
has a few twists. One is the way the SIMD instructions exe-
cute in the context of the ARC 700’s existing scalar pipeline.
For obvious reasons, ARC didn’t want to significantly
redesign the pipeline of a clean-slate microarchitecture

introduced only last year. (See MPR 3/8/04-01, “ARC 700
Aims Higher.”) Nor would executing SIMD instructions in
the same pipeline as other instructions be the best way to
achieve parallelism. So ARC provides two execution modes
for SIMD instructions: closely coupled and decoupled.

In closely coupled mode, programs can freely mix
SIMD instructions with other ARCompact instructions in
the same instruction stream, which is closely managed by
the processor. During the write-back stage of the scalar
pipeline, the processor diverts SIMD instructions into a spe-
cial code queue, which can be up to 256 slots deep. When
the SIMD unit signals it’s ready to accept an instruction, the
processor dispatches the next SIMD instruction in order
from the queue. This closely coupled mode is useful for
SIMD code that doesn’t recur too often. Figure 1 shows a
diagram of the SIMD execution modes.

Decoupled execution mode is better for frequently
repeated sequences of SIMD instructions—the types of
sequences often encountered in software codecs performing
repetitive operations on streams of audio/video data. In
decoupled mode, the program stores a SIMD instruction
sequence in a configurable-size SIMD code memory and
logs the address in a general-purpose register. A new
instruction called VRUN initiates execution at that address
by handing off the operation to the SIMD unit. In effect, the
SIMD code sequence is a macro, and the region of SIMD
code memory storing the macro behaves like a locked
instruction cache. Decoupled execution mode allows the
SIMD unit to independently fetch and execute code
sequences without burdening the ARC 700’s regular
pipeline, which may continue executing scalar instructions
in parallel with the SIMD unit. Figure 2 shows snippets of
code written differently for the closely coupled and decou-
pled SIMD execution modes.

SIMD Unit Is Almost a Coprocessor
The SIMD unit’s ability to run code from local memory
independently of the ARC 700’s main pipeline shows that
ARC has created the near equivalent of a vector coprocessor.
In decoupled mode, the SIMD unit can execute instructions
in parallel with the main pipeline and sometimes out of
program order. Yet it doesn’t require the extra overhead of
dual-issue superscalar and out-of-order control structures,
which would inflate the size of the processor and consume
more power. With target audio/video applications, the
SIMD unit can run autonomously much of the time,
scarcely interfering with normal scalar execution.

Decoupling the SIMD unit from the main pipeline
may appear to make the processor less integrated than it
should be. Note that SIMD instructions don’t enter the
SIMD queue or SIMD code memory until leaving the final
write-back stage of the ARC 700’s seven-stage main
pipeline. A better-integrated processor might divert SIMD
instructions into their separate pipeline much sooner, per-
haps at the decode stage (stage 3 in the ARC 700). Instead,
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Figure 1. ARC’s new SIMD instructions can execute in a closely cou-
pled mode or a decoupled mode, depending on the program’s
requirements. In closely coupled mode, the ARC 700 processor issues
SIMD instructions from the normal pipeline’s write-back stage
through a special queue to the SIMD unit. In decoupled mode, the
SIMD unit fetches frequently executed sequences of SIMD instruc-
tions from local code memory dedicated for that purpose.
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SIMD instructions must traverse the entire length of
the main pipeline before starting their detour
through the SIMD queue or SIMD code memory and
only then begin their journey through the SIMD
pipeline, as Figure 3 shows.

Once the vector instructions reach the SIMD
unit, they find themselves in a new world. The SIMD
unit has its own eight-stage pipeline with 128-bit
datapaths—much wider than the conventional 32-bit
datapaths of the ARC 700’s main pipeline. (A user-
configuration option can widen the SIMD accumula-
tor’s datapath to 160 bits, allowing rapid transfers of
four 40-bit values, instead of the four 32-bit values
permitted by the default 128-bit datapath.) As
described above, the SIMD unit also has its own reg-
ister files for vector and scalar data. In addition, the
new vector load/store instructions must always access
dedicated local memories for SIMD instructions and
data, not main memory directly or the ARC 700’s
instruction and data caches.

In other words, the SIMD unit is virtually a
coprocessor bolted onto the back door of the ARC 700.
It’s not just another function unit among equals. The
ARC 700’s main pipeline is essentially a dark tunnel to
the SIMD unit. In contrast, ARC’s XY Advanced DSP
Extensions—a long-available option for the ARC 700—
hook into the main pipeline at stage 2 (the alignment
stage) and add a separate memory-access pipeline in
parallel with the main pipeline.

However, there are good reasons why ARC attached the
SIMD unit to the tail of the main pipeline. First, it decouples
performance as well as execution. The SIMD unit can run at
the same clock frequency
as the rest of the ARC 700
or at a different frequency,
depending on the applica-
tion’s performance and
power requirements. And
the ARC 700 can run at its
maximum clock frequency
with or without the SIMD
extensions. This isn’t true
of the XY Advanced DSP
Extensions, which tend to
slow the processor.

Another reason for
arranging the pipelines
end-to-end is that the ARC
700 is the first ARC proces-
sor with a precise excep-
tion model. To support
sophisticated virtual-
memory operating sys-
tems, the processor must be
able to resume executing

load/store instructions after recovering from page faults. The
processor cannot change its architectural state until instruc-
tions finish executing and are committed in the final write-
back stage. Appending the SIMD pipeline after writeback
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Figure 2. These two examples show how programmers can write the same code
for closely coupled SIMD execution or decoupled SIMD execution. At left, the
closely coupled code executes a loop of mixed scalar and SIMD instructions. At right,
the decoupled code uses the new VRUN instruction—a nonblocking operation—
to run a macro of frequently executed vector code previously stored in SIMD code
memory. The SIMD unit can autonomously execute the macro while regular code
executes in the scalar pipeline.

Tightly coupled SIMD model
example_loop:

push_s r13
mov_s r13,r6
vmovzw vr00,r1,1
vmovw vr00,r2,2
vmovw vr00,r0,4
vmovzw vr23,r4,1
vmovw vr23,r5,2
vmovw vr23,r3,4
cmp_s r13,0
mov.gt lp_count,r13
lpgt .L01
vld128 vr01,[i0]
vld128 vr02,[i0,0x10]
vmrb vr01,vr02,vr01
vld128 vr03,[i1]
vavrb vr01,vr01,vr03
vst128 vr01,[i2]
vaddw vr00,vr00,vr23

.L01 j r31

Decoupled SIMD model
example_loop:

push_s r13
mov_s r13,r6
vmovzw vr00,r1,1
vmovw vr00,r2,2
vmovw vr00,r0,4
vmovzw vr23,r4,1
vmovw vr23,r5,2
vmovw vr23,r3,4
cmp_s r13,0
mov.gt lp_count,r13
lpgt .L01
vrun r7

.L01 j r31

Macro sequence stored in SCM:

[r7]: vld128 vr01,[i0]
vld128 vr02,[i0,0x10]
vmrb vr01,vr02,vr01
vld128 vr03,[i1]
vavrb vr01,vr01,vr03
vst128 vr01,[i2]
vaddw vr00,vr00,vr23

Figure 3. ARC’s SIMD unit branches from the ARC 700’s main pipeline after the final write-back stage, then
appends a new eight-stage pipeline for vector instructions. The SIMD unit always fetches vector instructions
from the SIMD code queue or SIMD code memory, and it always fetches vector data from SIMD data memory.
The DMA unit handles all memory transfers between SIMD memory and main memory.
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Instruction Description Notes Instruction Description Notes

vld32 32-bit vector load veqw Vector compare for equality
vld64 64-bit vector load vnew Vector compare for inequality
vld64w 64-bit vector load, 16-bit elements Sign extend vlew Vector compare less-than or equal
vld32wl 32-bit vector load, 16-bit elements Upper 4 elements vltw Vector compare less-than
vld32wh 32-bit vector load, 16-bit elements Lower 4 elements
vld128 128-bit vector load, SIMD addr reg vexch1 Vector exchange, single elements
vld128r 128-bit vector load, scalar addr reg vexch2 Vector exchange, paired elements
vst16 16-bit store from vector register vexch4 Vector exchange, quad elements
vst32 32-bit store from vector register vmr1w Vector merge, shift right 1 element
vst64 64-bit store from vector register vmr2w Vector merge, shift right 2 elements
vst128 128-bit store from vector register SIMD addr reg vmr3w Vector merge, shift right 3 elements
vst128r 128-bit store from vector register Scalar addr reg vmr4w Vector merge, shift right 4 elements
vmvw Vector move (conditional) vmr5w Vector merge, shift right 5 elements
vmvzw Vector move (conditional) Zero unwanted vmr6w Vector merge, shift right 6 elements
vmovw Copy GPR to vector elements vmr7w Vector merge, shift right 7 elements
mmovzw Copy GPR to vector elements Zero unwanted vsr8 Byte shift right by register distance
vmvaw Vector move (conditional) Accumulate vmrb Vector merge and byte shift right
vmovaw Copy GPR to vector elements Accumulate vmr1aw Vector merge, shift right 1 element Accumulate

vmr2aw Vector merge, shift right 2 elements Accumulate
vand Vector logical AND vmr3aw Vector merge, shift right 3 elements Accumulate
vor Vector logical OR vmr4aw Vector merge, shift right 4 elements Accumulate
vxor Vector logical XOR vmr5aw Vector merge, shift right 5 elements Accumulate
vbic Vector bit-clear vmr6aw Vector merge, shift right 6 elements Accumulate
vandaw Vector logical AND Accumulate vmr7aw Vector merge, shift right 7 elements Accumulate
vxoraw Vector logical XOR Accumulate vsr8aw Vector byte shift, accumulate elements
vbicaw Vector bit-clear Accumulate vasrw Vector arithmetic right shift

vasrrw Rounding arithmetic right shift Simple rounding
vaddw Vector add vasrsrw Rounding arithmetic right shift Symmetric
vsubw Vector subtract
vsummw Vector masked summation vasrpwb Pack with unsigned saturation
vaddsuw Vector add/sub  Butterfly vasrrpwb Pack with unsigned saturation Simple rounding
vavb Vector byte average vupbw Unpack bytes unsigned
vavrb Vector byte average with rounding vupsbw Unpack bytes signed
vmulw Vector multiply vupbaw Unpack bytes unsigned Accumulate
vmulfw Vector multiply fractional vupsbaw Unpack bytes signed Accumulate
vmaxw Vector maximum
vminw Vector minimum vnop Vector no-op
vabsw Vector absolute value vint Interrupt scalar processor
vdifw Vector absolute difference vd6tapf Dual 6-tap filter for H.264
vsignw Vector sign vh264ft H.264 filter test
vbaddw Vector-scalar add vh264f H.264 filter operation Uses filter test
vbsubw Vector-scalar subtract vvc1ft VC-1 filter test
vbrsubw Vector-scalar reverse-subtract vvc1f VC-1 filter test operation Uses filter test
vbmulw Vector-scalar multiply
vbmulfw Vector-scalar multiply fractional vrec Start recording SIMD macro
vbmaxw Vector-scalar maximum vendrec End macro recording
vbminw Vector-scalar minimum vrun Run macro sequence
vaddaw Vector add Accumulate vrecrun Record and run macro sequence
vsubaw Vector subtract Accumulate vdirun Run DMA input operation
vmulaw Vector multiply Accumulate vdorun Run DMA output operaion
vmulfaw Vector multiply fractional Accumulate vdiwr Write DMA input channel register
vbmulaw Vector-scalar multiply Accumulate vdowr Write DMA output channel register
vmaxaw Vector maximum Accumulate vdird Read DMA input channel register
vminaw Vector minimum Accumulate vdord Read DMA output channel register
vabsaw Vector absolute value Accumulate
vdifaw Vector absolute difference Accumulate

Macros & DMA Instructions

Logic Instructions

Arithmetic Instructions

Pack / Unpack Instructions

Miscellaneous & Special Instructions

Data-Movement Instructions Compare Instructions

Boolean result
vectors for
conditional vector
instructions

Permute / Align / Scale Instructions

Table 1. ARC’s SIMD extensions add 104 new instructions to the ARCompact ISA. Most of these instructions operate directly on the new 128-bit
vector registers; others use the new 16-bit scalar registers. The SIMD instruction set is designed to accelerate popular video algorithms and codecs
at high frame rates and resolutions up to D1 (720 × 480 pixels NTSC, 720 × 576 pixels PAL and SECAM).
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guarantees that all instructions reaching the SIMD code queue
will commit. This simplifies the design of both pipelines.

A third reason for decoupling the pipelines is that either
one can stall without necessarily affecting the other. Unless
there are mutual instruction dependencies, one pipeline can
keep running while the other recovers. This is possible even if
an instruction destined for the SIMD pipeline needs
operands from the processor’s core registers, because the
instruction carries those operands into the SIMD code queue
or SIMD code memory. ARC says it would decouple the
SIMD unit from the ARC 700 this way, even if it were starting
the whole design from scratch.

We can think of yet another advantage of designing
the SIMD unit as a virtual coprocessor: it’s more portable to
other implementations. We suspect it will appear in future
ARC processor cores and operate in much the same way it
does now.

New Instructions Optimized for A/V
With 104 new instructions, the SIMD extensions represent
a major addition to the ARCompact ISA. The instruction set
adheres to a classic RISC load/store architecture, separating
arithmetic and logical operations from memory operations.
Most instructions perform fixed-point or fractional vector
operations on multiple elements of 8-, 16-, or 32-bit data.
The load/store instructions can read or write 128 bits of
data from or to SIMD data memory in a single clock cycle.
The DMA controller handles all transfers between local data
memory and external memory.

There’s a great deal of flexibility in this instruction set.
Some load instructions can read unaligned data, though it’s
often unnecessary, because the DMA controller aligns most
data automatically. Some load instructions can unpack data
by extending the elements, which prepares the data for later
processing at higher levels of precision. For instance, the
new vld64w instruction loads an eight-byte vector array into
a 128-bit vector register by extending each byte-size element
into a 16-bit value. Similar instructions can “unpack” a sin-
gle scalar value by replicating it as multiple elements in a
vector register, a transformation known as scalar-to-vector
broadcasting. By applying bit masks, many of these
load/store instructions can select or deselect individual ele-
ments of a vector array before moving the data. Deselected
elements may be cleared or left unchanged.

Arithmetic instructions are equally powerful. One in-
struction (vaddsuw) can perform 16 operations with 16-bit
precision to calculate a two-point vectorized butterfly,
which is useful for discrete cosine transforms (DCT) and
inverse DCTs (iDCT). To support these kinds of vector-
multiplication instructions, the SIMD unit has eight 16- × 16-bit
multipliers capable of handling 16-bit integer or fractional
data. The 16-bit fractional datatype isn’t an IEEE 754
floating-point datatype; it uses the 1q15 format, with one
sign bit and 15 mantissa (significand) bits. The multipliers
can automatically round results from fractional operations.

ARC created many of these new instructions with spe-
cific video algorithms in mind. For example, byte-averaging
instructions are valuable for interpolating half- and quarter-
pixel values when running the motion-compensation rou-
tines commonly found in video codecs. Two of these in-
structions (vavb and vavrb) can perform 16 byte-averaging
calculations per clock cycle, allowing the SIMD unit to
interpolate a 16- × 16-pixel macroblock in only 16 cycles.
Table 1 lists all 104 new instructions with brief descriptions.

In another example of clever architecture definition,
ARC created three variants of a vector-exchange instruction
(vexch1, vexch2, vexch3) specifically for transposing blocks of
data arranged in two-dimensional arrays, as often found in
video streams. This instruction can rapidly transpose a 4 × 4
or 8 × 8 matrix using only two vector registers. Transposing a
4 × 4 matrix requires only four iterations of this instruction;
transposing four 4 × 4 matrices requires only eight iterations;
and transposing an 8 × 8 matrix requires only twelve itera-
tions. Performing these kinds of transformations without
special instructions or registers would require dozens, per-
haps hundreds, of conventional RISC instructions.

H.264 and VC-1 codecs are gaining popularity, so ARC
has defined some new instructions to accelerate their
underlying operations. Two examples are vh264ft (which
applies a horizontal deblocking filter test) and vh264f
(which applies the filter values to block boundary pixels).
ARC says these instructions exploit more pixel-level paral-
lelism and improve performance 15–25 times over an
unmodified ARC 700. In addition to all these examples of
powerful vector instructions, ARC has defined new scalar
extensions to accelerate entropy decoding of compressed
bitstreams. Table 2 summarizes the performance of ARC’s
extensions.

DMA Controller Optimized for Multimedia
The DMA controller that manages all transfers between main
memory and SIMD data memory differs in some respects
from similar controllers in other embedded processors. It’s
designed specifically for the requirements of multimedia
datatypes, which are often arranged in small blocks or arrays.
For instance, H.264 video frames appear in memory as two-
dimensional arrays subdivided into macroblocks of pixels.

To reduce the manual labor normally required for
maintaining memory-address pointers, the DMA controller
accepts simple commands for defining the boundaries of a
frame and for shifting the frame’s X and Y locations. Other
commands can define blocks of memory that exist within a
frame or extend beyond the frame’s boundaries. The DMA
controller can automatically fill or clip regions of blocks
that don’t coincide with the frame. These kinds of opera-
tions are common when manipulating the reference frames
in H.264 and VC-1 video streams, and they normally create
lots of work for programmers. To save even more time, the
DMA controller explicitly supports block transfers for both
interlaced and progressive-scan video.

©  I N - S T A T N O V E M B E R  2 1 , 2 0 0 5 M I C R O P R O C E S S O R  R E P O R T

ARC Shows SIMD Extensions



6

By offloading data transfers onto the smart DMA con-
troller, the SIMD subsystem seems even more like an inde-
pendent coprocessor. It can continuously stream audio or
video from main memory into SIMD data memory, per-
form vector operations on the data, and stream results back
into main memory—all in parallel, with little attention
from the rest of the ARC 700. Routing the audio/video data
through SIMD data memory avoids polluting the ARC 700’s
data cache, and the vector instructions bypass the normal
instruction cache, too. The DMA controller even handles
some messy details of main-memory management, such as
automatically compensating for DRAM page boundaries
when manipulating blocks of data.

At times, the ARC 700—nominally a uniscalar
processor—achieves three-way parallelism with these
extensions. It can simultaneously execute control code in its
main pipeline, execute SIMD code in its vector pipeline, and
transfer data to and from memory in the background.

Doing another favor for programmers, ARC provides
code libraries for popular audio, video, and image codecs:
H.264 decoding (baseline and main profiles); VC-1 decod-
ing (baseline and main profiles); MPEG-4 decoding (simple
profile to advanced simple profile, layer 4); MPEG-2 decod-
ing (main profile at main level); JPEG encoding; Motion
JPEG (M-JPEG) encoding; AAC encoding; and MP3 encod-
ing (up to 12 channels). Because the ARC 700 has an MMU,
it can run these codecs on sophisticated operating systems
like Linux or as standalone programs in deeply embedded
applications.

ARC Extensions Face Growing Competition
There’s a video stampede. In the past year, ARC, ARM, Sili-
con Hive, and Tensilica have all announced or introduced
video extensions for their licensable processor cores. (See
MPR 6/20/05-01, “Busy Bees at Silicon Hive.”) Startups such
as Elixent and Videantis are elbowing into the crowd with
their configurable processor cores. (See MPR 6/27/05-02,
“Elixent Improves D-Fabrix.”)

On November 1, MIPS Technologies announced that
Sarnoff Corp. will provide synthesizable accelerator cores
and software codecs for H.264 and MPEG-4 video on MIPS
processors. On November 8, Philips announced the
TM3270, the first low-power TriMedia processor core, which
has new video extensions. And on November 16, Imagina-
tion Technologies introduced the PowerVR MSVDX video-
decoder core, which supports the latest video codecs at high-
definition resolutions up to 1080i/1080p and 2048 × 1024
pixels. The options for licensing digital-video intellectual
property (IP) keep multiplying.

The two gorillas in the room are MIPS and ARM. MIPS
processors are very popular in set-top boxes and other home-
video appliances, but they are less common in mobile-video
products, a fast-growing market. At Spring Processor Forum,
MIPS introduced the four-member 24KE family of 32-bit
processor cores, which add DSP extensions to existing 24K
cores. Although the 24KE DSP extensions are adequate for
low-end digital video, they are mainly intended for digital
audio and speech coding, so they aren’t as video-specific as
the extensions from ARC, Tensilica, Philips, and some other

competitors. (See MPR 5/31/05-01, “The
MIPS 24KE Family.”)

That’s why Sarnoff ’s deal with MIPS
is timely. Sarnoff ’s licensable Silicon IP
cores combine programmability with hard-
wired acceleration and are fully synthesiz-
able. Depending on the levels of perform-
ance and functionality required, the cores
range in size from tens of thousands to
hundreds of thousands of gates, similar to
competing solutions. Sarnoff ’s cores won’t
be as tightly integrated with the processor
as are the ISA extensions from ARC, ARM,
Philips, Tensilica, and others, but they
should provide competitive performance.

ARM is traditionally the lower-
power alternative to MIPS. Until recently,
ARM processors lacked enough horse-
power for the most demanding multime-
dia applications. In the past 18 months,
ARM has taken three big steps toward
high performance: OptimoDE, Neon, and
Cortex-A8. OptimoDE is a highly cus-
tomizable coprocessor core with impres-
sive DSP and media-processing capabili-
ties. (See MPR 6/7/04-01, “ARM’s
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Computation SIMD Clocks Block Clocks / Pixel-Op SIMD Speedup

Forward DCT 8x8 113 8x8 1.77 9.4x
Inverse DCT 8x8 129 8x8 2.02 10.4x
Matrix Transpose 8x8 12 8x8 0.19 12.5x
Half-Pel Interpolate 16x16 83 16x16 1.3 9.8x

Vertical Low-Pass Filter 453 16x16 7.08 12.9x
Horizontal Low-Pass Filter 516 16x16 8.06 9.8x

Integer Transform 82 4x4 5.13 10.3x
Inter-Prediction

Vertical Filtering 71 8x8 1.11 25.2x
Horizontal Filtering 116 8x8 1.81 15.4x
Quarter-Pel Interpolate 46 8x8 0.72 8.3x

Intra-Prediction (Planar) 240 16x16 0.94 7.7x
Deblocking Filter

Horizontal Filtering 2 6 0.33 70x
Vertical Filtering 54 24 2.25 10.4x

Integer Transform 143 8x8 2.23 10.7x
Bilinear Block Filter 93 8x8 1.45 11x
Bicubic 2D Filter 216 8x8 3.38 11x

MPEG-1, MPEG2, MPEG-4

MPEG-4

H.264

VC-1

Table 2. ARC measured the performance of its new SIMD extensions by synthesizing an ARC
750D processor core in the Virtex-4 FPGA of an ARCangel-4 development system. Cycle
counts include load/store operations from local memory, as well as SIMD computations. ARC’s
SIMD extensions not only speed up common media operations but also save power by allow-
ing the processor to run at a lower clock frequency for a given level of performance.
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Configurable OptimoDE.”) The Neon Advanced SIMD
Extensions include new vector and DSP instructions plus
registers for the latest ARMv7 architecture. Cortex-A8
(code-named Tiger) is ARM’s first superscalar processor
core and the first processor to incorporate Neon. (See MPR
10/25/05-02, “Cortex-A8: High Speed, Low Power,” which
includes our analysis of Neon.)

Cortex-A8 and Neon dramatically alter the competi-
tive landscape. They are a bold challenge to MIPS, which has
been shipping high-performance superscalar processor
cores for years but isn’t the first choice for designs needing
low power consumption. If ARM’s estimates are close to
accurate, Cortex-A8 will compete strongly with the best
MIPS processors while holding down power consumption
to levels more appropriate for mobile applications. Neither
ARC nor Tensilica has a baseline processor as powerful as
Cortex-A8, although EEMBC benchmarks show that well-
crafted extensions can boost throughput more efficiently
than superscalar pipelines and high clock speeds do.

ARC vs. ARM and Tensilica
Neon is a major upgrade to the ARM architecture, improv-
ing performance two to four times over the existing ARMv6
SIMD extensions. In some ways, Neon resembles ARC’s
SIMD extensions. Both architectures append the SIMD unit
to the processor’s main pipeline and allow decoupled SIMD
execution. Both SIMD units have their own vector register
files and instruction queues. Both have deep pipelines: ten
stages for Neon, eight stages for ARC.

However, there are vital differences. Neon is less specif-
ically targeted at video and is more suitable for other embed-
ded applications. Although Neon’s vector datapaths are only
64 bits wide, not 128 bits wide like ARC’s, Neon can manip-
ulate operands as large as its datapaths, whereas ARC’s largest
operands are limited to 32 bits. For media processing, the
inability to handle 64-bit operands isn’t a disadvantage for
ARC. Likewise, Neon supports 32-bit single-precision floating-
point operations, whereas ARC’s extensions are limited to
16-bit 1q15 fractional data. Again, that’s not a problem in
audio/video processing. For developers needing true floating-
point math, ARC offers other extensions. (See MPR 5/23/05-
02, “Float Without Bloat.”)

ARC’s SIMD unit appears to be capable of operating
more autonomously than ARM’s. It has its own code and data
memories in addition to an instruction queue, plus the abil-
ity to run macro routines without bothering the processor.
Neon has instruction and data queues, plus a store buffer, but
Neon also uses the processor’s L1 and L2 data caches, which
could conflict with other operations and cause thrashing.
Audio/video datastreams have relatively little temporal
locality, because the processor uses the data only once.
Streaming the data through conventional caches may
replace other data the processor needs to retain, unless pro-
grammers carefully lock and manage the caches. In contrast,
ARC’s SIMD unit bypasses the caches in favor of dedicated

code and data memories. In addition, ARC’s dedicated
DMA controller can natively transfer blocks of media data
to those memories in parallel with other operations.

Early performance estimates from ARC and ARM give
ARC a significant advantage in power consumption. In a
next-generation 65nm fabrication process, Cortex-A8 will
consume 300mW at 600MHz, including Neon and caches. In
a generic 90nm process, an ARC 750D with SIMD extensions
and memories requires about 80mW at the maximum worst-
case clock frequency of 533MHz. Both processors are capable
of executing two instructions per cycle with target applica-
tions. Unfortunately, the throughput performance estimates
from ARC and ARM aren’t directly comparable, so we can’t
judge the relative value of their SIMD extensions in those
terms. MPR encourages both companies to publish bench-
mark scores using EEMBC’s Digital Entertainment suite. (See
MPR 2/22/05-01, “EEMBC Expands Benchmarks.”)

Tensilica’s presentation at FPF was a technology pre-
view, not a product announcement. Nevertheless, Tensilica
was generous with details. Aiming for high performance,
Tensilica previewed a heterogeneous dual-core audio/video
processor based on differently configured Xtensa LX cores.
(See MPR 5/31/04-01, “Tensilica Tackles Bottlenecks.”) One
core is a stream processor; the other is a pixel processor. Both
make extensive use of custom instructions—more than
200—and share a five-channel DMA controller. Total size is
nearly 300,000 gates. Even with two cores, Tensilica’s video
processor isn’t much larger than an ARC 750D with SIMD
extensions, shown in Figure 4. MPR will analyze Tensilica’s
video processor in more depth soon.
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P r i c e  &  Av a i l a b i l i t y

Currently, ARC doesn’t license the new SIMD extensions
separately. Instead, the extensions are part of the ARC-
media and ARCvideo Subsystems, which are larger exten-
sion packages for the ARC 710D, 725D, and 750D pre-
configured processor cores. Another package is the
ARCsound Subsystem. In turn, all these packages are part
of the ARC Multimedia Subsystem. ARC plans to ship the
ARCmedia and ARCvideo Subsystems later this year.

The new SIMD extensions are fully synthesizable
Verilog models and include software libraries for popular
multimedia codecs: H.264 decoding (baseline and main
profiles), VC-1 decoding (baseline and main profiles),
MPEG-4 decoding (simple profile to advanced simple
profile, layer 4), MPEG-2 decoding (main profile at main
level, MP@ML), JPEG encoding, M-JPEG encoding, AAC
encoding, and MP3 encoding.

Licensing fees and terms are negotiable and not
publicly disclosed. For more information about ARC’s
subsystems, visit www.arc.com/subsystems/.



8

With HDTV and digital broadcasting finally catching
on, and the U.S. government moving closer to mandating

the obsolescence of broadcast analog TV, the consumer-
electronics industry is on the verge of a tremen-
dous sales boom. Plunging prices of large flat-panel
displays are another incentive for consumers to
replace their old TVs. ARC would love to gain ground
against MIPS in home video, but ARC’s new exten-
sions are more suitable for mobile video than for
higher-resolution HDTV—unless, perhaps, ARC
combines the extensions with a more powerful pro-
cessor or a multicore processor. Meanwhile, ARM’s
Cortex-A8 is promising higher performance, too.
Luckily, the home video market is big enough for
more than one winner.

In mobile video, there are two important appli-
cations: cellphones and everything else. ARM has a
tight grip on the phones. Cortex-A8 and Neon are
necessary to hold that grip, because next-generation
do-it-all wireless handsets need more processing
power than ARM’s older cores can realistically
deliver. ARC’s processors and media extensions can
meet the performance requirements—even beating
ARM in some respects, such as power consumption—
but breaking ARM’s hold will be difficult. ARC stands
a better chance competing for design wins in mobile
video products not currently dominated by ARM.
Ideally, ARC will find a market niche it can dominate

in the same way ARM has muscled its way into cellphones
and Apple’s iPod.
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Figure 4. This synthesized floorplan shows an ARC 750D processor core enhanced
with the ARCmedia Subsystem, which includes the new SIMD extensions. This con-
figuration has 32KB instruction and data caches, 10KB SIMD code memory, 32KB
SIMD data memory, the media-aware DMA controller, and entropy-decoding exten-
sions for H.264, VC-1, MPEG-2, and MPEG-4. Excluding memories and other com-
ponents of the ARCmedia Subsystem, an ARC 750D core with SIMD extensions
requires about 268,000 gates. MPR estimates that the full ARCmedia configuration
shown here is appreciably larger, perhaps 400,000 gates. However, as is often the
case, the memory requires more silicon than the logic does. ARC says this floorplan
occupies 9mm2 in TSMC’s 0.13-micron LVLK-OD process when synthesized with
Virage physical-IP libraries. Worst-case clock frequency is an impressive 500MHz.


