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more are available in embedded-processor cores licensed as 
synthesizable intellectual property (IP). Now MIPS Technol-
ogies is adding another option: the first licensable processor 
cores with hardware-enabled simultaneous multithreading.

The new M IPS32 34K family consists of four 32-bit 
processor cores, all related to the M IPS32 24KE  family 
introduced at Spring P rocessor Forum 2005. (See MPR 
5/31/05-01, “White P aper: T he M IPS32 24KE C ore Fam-
ily.”) The key difference between the 24KE and 34K families 
is pipelined multithreading. Instructions from as many as 
five different tasks can pass through the nine-stage pipeline 
of a 34K processor at the same time.

Although the uniscalar 34K can issue only one result 
per clock cycle, multithreading allows it to reduce the 
overhead of context switching and hide the latency of slow 
operations, such as memory-dependent loads and stores. 
This technique is known as simultaneous multithread-
ing (SMT) or thread-level parallelism. N ote that for the 
purposes of this discussion, a thread can be any executable 
process—even an operating system—not just a microthread 
within a program.

Multithreading Reaches a Watershed
MIPS isn’t the first company to use SMT, which dates to the 
early 1990s. (See MPR 7/14/97-03, “Multithreading Comes 
of Age.”) In 1999, DEC announced that Alpha 21464 server 
processors would use SMT, but Alpha’s unpopularity and 
premature demise did little to promote the technology. (See 

MPR 12/6/99-01, “Compaq C hooses SMT  for A lpha.”) In 
2001, Intel brought SMT to the mainstream by announcing 
Hyper-Threading, a limited two-way version of thread-level 
parallelism that has appeared in several P entium 4 and 
Xeon processors for PCs and servers. (See MPR 9/17/01-01, 
“Intel Embraces Multithreading.”)

More recently, embedded-processor architects have 
seized upon SMT as a power-efficient path to higher perfor-
mance. That’s the big attraction for MIPS. Multithreading 
avoids the pipeline duplication of superscalar execution 
and the core duplication of multicore processing, although 
it may be combined with those and other techniques. 
In addition, thread-level parallelism is easy to exploit in 
many kinds of embedded software. Those advantages led a 
startup, Ubicom, to introduce a tiny multithreaded packet 
processor in 2003. (See MPR 4/21/03-01, “Ubicom’s N ew 
NPU Stays Small.”)

In 2005, the technology reached a watershed when 
Intel, Raza Microelectronics (RMI), and Sun Microsystems 
introduced powerful processors that combine multithread-
ing with multiple cores, which is called chip multithreading 
(CMT). (See MPR 5/9/05-01, “A  Day A t the R aces,” MPR 
5/17/05-01, “A N ew M IPS P owerhouse Arrives,” and MPR 
1/3/06-01, “Sun’s Niagara Begins CMT Flood.”)

Not until now, however, have ASIC and SoC develop-
ers been able to license a multithreaded embedded-processor 
core for their own chip designs. T he M IPS32 34K family 
fulfills a promise made at M icroprocessor Forum 2003, 
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when M IPS announced the multithreading application-
specific extension (MT A SE) for future M IPS processors. 
(See MPR 11/10/03-01, “Multithread T echnologies Dis-
closed at MPF.”) MIPS says multithreading can dramatically 
improve performance while preserving compatibility with 
existing single-threaded software.

MIPS has already licensed the 34K to five customers, 
two of which prefer to remain anonymous for now. T he 
public customers are iVivity, M obileye, and PMC -Sierra. 
Georgia-based iVivity makes storage processors. Mobileye, 
based in the Netherlands, is integrating a 34Kf core into its 
future EyeQ-2 chip, an embedded controller for automotive 
collision-avoidance systems. PMC -Sierra, based in Silicon 
Valley, is a longtime MIPS licensee that will most likely use 
the 34K in high-performance network and communica-
tions processors.

34K Family Resembles 24KE
MIPS is introducing four members of the MIPS32 34K fam-
ily, consistent with previous variations within the 24KE, 24K, 
and 4KE  families of 32-bit embedded-processor cores. A s 
Table 1 shows, all four new processors share the same basic 
CPU  core, with DSP  extensions inherited from the 24KE 
family. Variations within the 34K family include an optional 
FPU plus the option of adding user-defined extensions—a 
Pro Series feature that M IPS calls C orExtend. (See MPR 
3/3/03-01, “MIPS E mbraces C onfigurable T echnology.”) 
Both features affect the core’s size and power consumption.

The simplest MIPS32 34K core is the 34Kc, which has 
neither an FPU nor CorExtend. Next comes the 34Kf, which 
has an FPU, again without C orExtend. T he 34Kc P ro has 
CorExtend but no FPU. T he highest-end core is the 34Kf 
Pro, which has both an FPU and CorExtend. Thanks to the 
MIPS architecture’s workstation/server heritage, the optional 
FPU available for these cores is one of the best available for 
a licensable embedded processor. It supports single- and 
double-precision floating-point math and complies with 
the IEEE 754 standard. CorExtend is a powerful option, too, 
although the configurable-processor technology from com-
petitors ARC International and Tensilica is superior.

SMT is the feature that distinguishes the 34K from all 
other licensable embedded-processor cores. MIPS took pains 
to add this capability without disrupting the well-established 
MIPS architecture or exceeding the power envelope expected 
of an embedded processor. P erhaps the most critical deci-
sion was the number of threads to support. In theory, the 
number of simultaneous threads is limited only by the depth 
of the pipeline, because at any moment, each pipe stage can 
be processing an instruction from a different thread. How-
ever, the maximum number of threads isn’t necessarily the 
optimal number, especially for an embedded processor. Each 
thread requires a duplicate register file, program counter, 
and other structures to store its context while the processor 
switches from one thread to another. This overhead inflates 
the processor’s gate count and power consumption.

At design time, customers may configure the 34K to 
support two to five simultaneous threads. (Although a 
single-threaded implementation is possible, the 24KE 
is a better choice for applications needing only one 
thread.) T he maximum of five threads seems odd, 
because it requires a three-bit thread pointer, which 
could support as many as eight threads. MIPS is prob-
ably limiting current implementations of the 34K to five 
threads while preserving the option of supporting six, 
seven, or eight threads in future processors.

Each thread requires what M IPS calls a thread 
context: a separate instantiation of all the structures 
needed to hold the user-level state information of a pro-
cess. E ach thread context has an independent program 
counter and a complete set of programmer-visible regis-
ters. In the MIPS32 Release 2 instruction-set architecture 
(ISA), there are 32 general-purpose registers (GPR), 32 
bits wide, plus a 64-bit “hi/lo” accumulator for saturating 
arithmetic. MIPS32-R2 allows developers to implement 
one or more shadows of each GPR to support vectored 
interrupts or external interrupt controllers. T he DSP 
extensions carried forward from the 24KE  add three 
more 64-bit accumulators and one 32-bit control register 
to the ISA. In addition, the 34Kf and 34Kf Pro cores have 
32 floating-point registers, 64 bits wide.

With so much user-level state to replicate for 
each thread context, it’s easy to see why determining 
the optimal number of simultaneous threads isn’t a 
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Table 1.  Members of the new MIPS32 34K family have most features in 
common, differing only by whether individual members have an FPU and/or 
CorExtend. Clock frequencies and power-consumption estimates in this table 
assume a core supply of 1.0V and a generic 90nm CMOS fabrication process 
under worst-case conditions. The estimated core size—extracted from a full-
layout GDSII database—excludes caches and assumes a configuration support-
ing four simultaneous threads. Core-size and power-consumption estimates for 
the FPU-equipped processors are not available (n/a) but will be slightly greater 
than for the 34Kc.
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casual decision. Developers 
working with the 34K need 
to weigh the performance 
improvements of multi-
threading against the cost 
of the extra logic (more on 
this later). A n automated 
processor-configuration 
tool directs the logic com-
piler to add the structures 
necessary for each thread 
context.

Threading the Needle 
Pops Bubbles
Figure 1 sums up the advantages of SMT  explained in 
more depth in previous articles. Normally, a context switch 
forces a processor to flush its pipeline and begin fetching 
instructions from the new context. E ven without a con-
text switch, pipelines can suffer from bubbles (empty pipe 
stages) when a slow operation stalls execution. In particular, 
cache misses create pipeline bubbles when slow external 
memory forces the processor to wait for a load operation to 
complete. Another common source of pipeline bubbles is a 
mispredicted branch instruction. No matter what the cause, 
bubbles and pipeline flushes waste valuable clock cycles. An 
SMT processor tries to avoid flushes and fill the bubbles by 
inserting instructions from different threads.

In addition to the variable number of thread contexts, 
another design-time option in 34K processors is what MIPS 
calls a virtual processing element (VPE). This option allows 
a 34K processor to run two independent operating environ-
ments simultaneously, each with its own threads. Each envi-
ronment could be an embedded OS—either two instances 
of the same O S or two completely different operating 
systems. Alternatively, one or both VPEs could support the 
application software on “bare metal,” without any OS at all. 
(Many embedded systems don’t need the complexity of an 
OS or use a custom operating environment.)

To support each VPE, the processor duplicates all the 
privileged registers and structures an OS might need. In other 
words, a VPE holds all the OS-level state information of an 
operating environment, just as a thread context holds all the 
user-level state information of a thread. An example of OS-
level state is the MMU’s translation lookaside buffer (TLB) 
or memory map. (As with previous MIPS32 processors, the 
34K family allows developers to equip the MMU with either 
a TLB or a fixed memory map for virtual addresses.)

VPEs provide a simple form of virtualization, much 
like the virtualization technology now appearing in x86 
server and desktop processors from AM D and Intel. (See 
MPR 1/30/06-08, “This Technology Is Virtually Here Now.”) 
One difference is that embedded OSes need fewer modifi-
cations to run within their virtual compartments on 34K 
processors, because there’s no hypervisor software layer. To 

an operating system, each VPE  looks like a separate 34K 
processor. O f course, many embedded applications don’t 
need VPEs, but some applications can take advantage of this 
feature. For example, one VPE could run secure processes, 
such as encryption and electronic commerce, leaving the 
other VPE to handle unsecure tasks. Or a need for reliability 
could determine the division of labor.

Figure 2 shows how a typical embedded system might 
use two VPEs. In this example, one VPE has two thread con-
texts, allowing it to run two simultaneous threads, while the 
other VPE has three thread contexts, allowing it to run three 
simultaneous threads. A lthough developers must choose 
the maximum number of VPEs and thread contexts before 
logic synthesis, the processor can dynamically allocate 
threads to VPEs at run time. MIPS refers to this dynamic 
allocation as “binding.”

One cost of using two VPEs is the overhead of their 
additional logic: about 84,000 gates for both. A nother 
potential cost is larger caches. B oth operating environ-
ments, each perhaps running multiple threads, must share 
the same instruction and data caches. Developers choosing 
the multiple-VPE option should run simulations with real-
istic workloads to determine if larger caches are necessary. 
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Figure 1.  In this graphical example of SMT, the top part of the illustration shows three color-coded instruction 
streams representing different threads or processes. Each thread has gaps caused by cache misses during load 
operations—gaps that would create unwanted bubbles in a conventional instruction pipeline. The bottom part 
of the illustration shows how an SMT processor can fetch instructions from different threads to fill the gaps 
and eliminate the bubbles. SMT requires instant (single-cycle) context switching without flushing the pipeline, 
which in turn requires duplicate register files to preserve the state of each thread.
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Figure 2.  At design time, developers working with a 34K core can 
choose to duplicate all the resources needed to run an embedded OS on 
the processor, allowing it to run two operating systems simultaneously. 
MIPS refers to each set of OS resources as a virtual processing element 
(VPE). Each VPE can have one or more of its own thread contexts (TC), 
up to a maximum of five per processor.
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MIPS says normal-size caches are usually sufficient, because 
the processor can fill the pipeline with instructions from a 
different thread context after a cache miss.

To prevent cache thrashing—rarely a problem, accord-
ing to MIPS—programmers can lock individual cache lines 
or assign individual ways to particular thread contexts. 
Having the option of higher set-associativity might help in 
this regard; currently, the 34K limits caches to four-way set-
associativity. Another alternative is to stash important code 
or data in scratchpad RAM, which is a configurable option 
for all 34K processor cores.

Thread-Priority Policies Are Configurable
Any SMT processor needs a method of assigning execution 
priorities to threads. It’s particularly important for a mul-
tithreaded embedded processor, because embedded pro-
grams often have real-time constraints that cannot tolerate 
thread starvation. To address the needs of as many applica-
tions as possible, MIPS allows customers to determine the 
34K’s thread-priority policy.

The 34K’s default thread-priority manager obeys a 
round-robin policy, which simply allocates an equal number 

of clock cycles to each thread, one after the other. In a 
two-threaded implementation of the processor, each 
thread gets 50% of the available clock cycles; in the 
maximum five-threaded implementation, each thread 
gets 20%. (Actually, “thread priority” is an oxymoron 
with a round-robin manager, because no thread enjoys 
priority over any other thread.) The round-robin man-
ager is always built into the 34K core.

For more-sophisticated multithreaded applica-
tions, the 34K has an optional policy manager that’s user 
programmable. T his design-time option adds a mere 
5,000 gates to the core, so it’s an attractive option. The 
programmable policy manager allows an OS, the appli-
cation software, or custom logic to allocate clock cycles 

to different threads in various predefined ways. Further-
more, software programmers and logic designers can define 
their own methods of managing and assigning priorities. 
The programmable policy manager is obviously the most 
flexible thread-priority solution, because it allows priorities 
to change dynamically at run time, according to operating 
conditions. Developers must decide whether the program-
mable manager is worth the additional gates—the decision 
is immutable after the design is committed to silicon.

As T able 2 shows, M IPS has added only eight new 
instructions to the MIPS32-R2 ISA to support multithread-
ing. M ost of the instructions are self-explanatory: they 
enable or disable multithreaded execution, VPEs, or thread 
contexts. T wo instructions (MTTR and MFTR) are special 
privileged operations that allow a kernel thread to access 
the registers and other state information of a different 
thread. (We will describe interprocess communications for 
user-level software later.) T he ISA  has no special registers 
associated with multithreading itself, other than the usual 
architectural registers for each thread context.

In addition to new instructions, the 34K also has new 
instruction-dispatch queues and an extra stage near the front 

of the pipeline. E ach thread context has an eight-
entry dispatch queue that holds recently fetched 
instructions. (Branch instructions are decoded at 
this point, but not most other types of instructions.) 
These queued instructions wait until the thread-
priority manager approves their dispatch to a func-
tion unit. T he new pipeline stage, inserted after stage 
2, assigns each instruction to a thread context. A s 
Figure 3 shows, the 34K pipeline is nine stages deep, 
compared with eight stages in the 24KE.

What Figure 3 doesn’t show is the pipeline 
detour for M IPS16e instructions. Like almost all 
32-bit embedded processors, the 34K has a subset 
of 16-bit instructions for conserving memory. 
Supporting 16- and 32-bit instructions in a multi-
threaded processor caused some headaches for the 
34K’s designers (“We almost caught our hair on 
fire,” the engineering director told MPR), but they 
found a solution.
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Figure 3.  The MIPS32 34K and 24KE processors are close cousins, but the 34K 
has a slightly deeper pipeline to support simultaneous multithreading. The 34K’s 
extra stage—here labeled IT (instruction-fetch third)—assigns a thread context to 
the most recently fetched instruction. This assures that instructions from different 
threads always reference the correct registers and other state information associ-
ated with their contexts.
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Table 2.  MIPS32 34K processors add eight new instructions to the MIPS32 
Release 2 instruction-set architecture. These instructions allow programmers to 
enable or disable multithreading, enable or disable the optional virtual process-
ing elements (VPE), enable or disable individual threads, and access registers in 
different thread contexts.
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Every fetch from the instruction cache brings 64 bits 
into the pipeline—either two 32-bit instructions or four 16-
bit instructions. If a particular thread is running in MIPS16e 
mode, it detours through a subpipeline for two extra stages: 
IR  (instruction recode) and IK (instruction kill). In those 
stages, the processor expands 16-bit instructions into 32-bit 
operations. The subpipeline rejoins the normal pipeline at 
the new IT  stage. At that point, all the instructions begin 
entering the thread-dispatch queues.

Two Methods of Interthread Communication
Sometimes it’s necessary for threads to communicate with 
each other by passing parameters back and forth. However, 
application-level threads cannot communicate directly, 
because instructions in one thread context aren’t allowed 
to access registers in another context. (The previously 
described MTTR and MFTR instructions are privileged kernel-	
level instructions.) For that reason, the 34K provides two 
general methods for interthread communication.

One method is already available in all M IPS-compatible 
processors: the common load-link/store-conditional (LL/
SC) instruction sequence. This is a substitute for an atomic 
read-modify-write operation, which is more often found in 
CISC instruction sets. In an LL/SC sequence, the processor 
executes a load-link instruction, which returns the value 
currently stored at a particular memory location. Next, the 
processor executes a conditional store instruction, which 
stores a new value at the location only if another thread 
hasn’t changed the value since the load-link. U sing this 
method, multiple threads can pass parameters by using 
memory locations as mailboxes.

The drawback of the LL/SC  method is that it’s not 
truly atomic—another thread can easily change the value 
between the moments of the load-link and the conditional 
store. P rograms must repeatedly try to execute the LL/SC 
sequence within a loop until it completes. When several 
threads are active, all of them looping in this manner, they 
can compete with each other and waste numerous clock 
cycles on their initial load-links.

For that reason, the 34K offers an alternative: an 
interthread communication unit with lockable mailboxes. 
This is a configurable design-time option. T he mailboxes 
are memory-mapped 32-bit-wide locations that programs 
can access with standard load/store instructions. Although 
mailboxes appear to have conventional memory addresses, 
they are synthesized as flip-flops in the core. At design time, 
developers can configure the mailboxes as single-entry slots 
(like registers) or as FIFO buffers. MIPS provides reference 
code for up to 16 single-entry mailboxes or up to 16 four-
entry FIFOs, but Verilog-savvy developers can create any 
number of mailboxes or FIFOs they need.

When a thread reads a mailbox (using a normal 
load instruction), the processor blocks other threads from 
accessing the mailbox—the memory address is locked. Only 
one thread at a time can win the lock. When the winning 

thread finishes writing a new value into the mailbox (using 
a normal store instruction), the processor unlocks the mail-
box and allows other threads to compete for the lock. This 
method saves clock cycles over the LL/SC method, because 
a locked mailbox prevents other threads from executing 
their initial load-link instructions, so they don’t waste time 
reading a mailbox they’re not allowed to modify. In effect, 
the locking mailboxes bring an atomic read-modify-write 
capability to the MIPS architecture for the first time.

Making Performance Trade-Offs
SMT can add almost 200,000 gates to a 34K processor, espe-
cially if developers lavishly indulge in all the fancy options: 
the maximum of five thread contexts, the maximum of 
two VPEs, a programmable thread-priority manager, an 
interthread communication unit, and numerous mailboxes. 
Not to mention all the other options available for the 34K: 
a sophisticated FPU, C orExtend, a coprocessor interface, 
scratchpad memory, and T LBs instead of fixed memory 
maps for the MMUs.

Anyone who has shopped for a new car knows the feel-
ing. The question is whether the higher performance is worth 
the additional design complexity, silicon, and power con-
sumption. Does the application call for a Lotus or a Prius?

Although the 34K leans toward high throughput, not 
low power consumption, multithreading adds new twists 
to the equation. In some embedded applications, a multi-
threaded 34K processor might replace two or more smaller 
processor cores, resulting in lower overall system power. 
This is particularly likely if the 34K has two VPEs, allow-
ing it to run two different operating systems or to strictly 
isolate two different tasks. Also, keep in mind that the 34K 
has the same DSP extensions and CorExtend options that 
the 24KE has. With its signal-processing features and some 
well-crafted application-specific instructions, the 34K could 
make a separate DSP or ASIC redundant.

SMT  allows a processor to do more work at a given 
clock speed, so a multithreaded 34K processor could save 
power over a single-threaded 24KE  processor running the 
same workload at a higher clock speed. Even after accounting 
for the additional logic SMT  requires, the lower-frequency 
34K chip could be about the same size as the higher-	
frequency 24KE  chip, because slower memory arrays are 
denser than faster memories.

Another consideration is that a 34K could save power 
by using the thread-priority manager to allocate just 
enough clock cycles for a real-time task, instead of running 
at a higher frequency to guarantee real-time performance 
under any conditions. In sum, developers can use SMT 
to achieve higher overall throughput, lower overall power 
consumption, or a combination of both goals.

Measuring the Cost of Performance
MIPS has some benchmark results favorably comparing the 
performance of a dual-threaded 34K with a single-threaded 
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24KE. N aturally, one would expect M IPS to choose an 
example showing the 34K in the best light, but the bench-
marks are interesting nonetheless. For this test, MIPS com-
pared a 24KE  processor with a similarly configured 34K 
processor that has two VPEs and two thread contexts. Both 
processors had 16KB instruction and data caches. The test, 
conducted on a cycle-accurate instruction-level simulator, 
consisted of two packet-processing programs. As Figure 4 
shows, the 34K was 60% faster than the 24KE.

Another interesting result of this test was that the 34K 
missed the cache slightly more often than the 24KE  did. 
The 34K’s miss rate was 5.16%, compared with 4.41% for 
the 24KE. (Those miss rates are much lower than would 
be expected when running real-world software, probably 
because there wasn’t enough packet data to fully exercise 

the memory system.) Despite the 34K’s slightly higher miss 
rate, it managed to execute 0.61 instructions per cycle (IPC) 
in this test, compared with only 0.37 IPC  for the 24KE. 
These statistics suggest two conclusions. The 34K probably 
missed the cache more often because its two threads shared 
a cache no larger than the single-threaded 24KE’s cache 
(16KB). But multithreading worked as intended: when the 
34K suffered a cache miss, it was able to execute instructions 
from its other thread.

CPU  architects can do many things to improve the 
performance of a processor, but is the improvement worth 
the extra gates? In this (admittedly limited) example, 
the answer is yes. T he dual-threaded 34K processor was 
60% faster than the single-threaded 24KE  processor, but 
it requires only about 14% more silicon. T his estimate is 
based on gate counts extracted from post-layout models of 
both cores as configured for the packet benchmarks. Using 
die-area data that MIPS provided for a 0.13-micron fabrica-
tion process, MPR calculates that this configuration of the 
34K core has 694,000 gates, and the similarly configured 
24KE core has 607,000 gates.

Note that caches alone account for the area-equivalent 
of 290,000 of those gates, and the common hardware in the 
CPU cores is 250,000 gates. The important data is the extra 
logic required to support multithreading. MPR estimates 
that the threading logic (such as the thread-policy manager 
and interthread communication unit) adds 14,000 gates; 
the structures required for O S-level state information in 
two VPEs add 40,000 gates; and the structures required 
for user-level state information in two thread contexts add 
23,000 gates. Figure 5 shows a breakdown of the gates in the 
34K and 24KE cores, based on their configurations for the 
packet benchmarks.

Alternative Paths to High Performance
With the 34K processor, MIPS is taking a very different path 
to higher performance than other processor-IP vendors are 
taking. The 34K is the world’s first licensable multithreaded 
embedded-processor core, and it’s also the most configu-
rable core available from MIPS. In contrast, ARM’s highest-	
performance processor core, the new C ortex-A8, bets on 
two-way superscalar pipelines instead of multithreading. 
ARC  and T ensilica are strong believers in user-defined 
extensions—a capability available in some MIPS processors, 
including the 34K Pro series, but not as heavily promoted 
by MIPS. All four companies have customers using multi-
core designs to reach higher performance.

At first glance, it’s surprising that M IPS has chosen 
multithreading over superscalar execution. Today’s embed-
ded MIPS processors are descendants of the MIPS worksta-
tion/server processors of the late 1980s and 1990s. M IPS 
introduced its first single-chip superscalar processor, the 
R10000, in 1995. The R10000 was a four-way out-of-order 
design with speculative execution, still impressive 11 years 
later. C onsidering that history, one might expect M IPS to 
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Figure 5.  This chart shows the number of gates required for two simi-
larly configured 34K and 24KE processor cores—the same configurations 
MIPS used to obtain the benchmark results in Figure 4. With two thread 
contexts and two VPEs, the 34K core has 14% more gates than the 
single-threaded 24KE, but it’s 60% faster in the packet-processing tests.

����������

�������

�������

�������

�������

�������

������

�

����������������������������

�����������

Figure 4.  MIPS ran a packet-flow test and a packet-forwarding test 
(open shortest path first) on simulations of similarly configured 34K 
and 24KE processors. Parallelism is relatively easy to exploit in packet 
forwarding, which plays to the strength of the multithreaded 34K. This 
chart shows the number of clock cycles required to complete the tests, 
so a shorter bar is better—the 34K is 60% faster than the 24KE.
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use the familiar technique of superscalar pipelining instead 
of a less popular technique like multithreading.

However, M IPS concludes that SMT  is a more gate-
efficient path to higher performance than superscalar 
execution is. Perhaps this reflects MIPS’s greater experience 
with superscalar design. (The C ortex-A8 is ARM ’s first 
superscalar core.) B oth approaches have significant over-
head in extra logic—duplicate pipelines for superscalar, 
duplicate register files for multithreading. But multithread-
ing can deliver more bang for the buck than superscalar 
can, especially in an embedded processor. And the ability to 
switch contexts in a single clock cycle without flushing the 
pipeline has obvious advantages in real-time systems.

Multicore processors have even more duplication than 
superscalar or multithreaded processors, because they rep-
licate entire cores, not just pipelines or registers. MIPS says 
a multithreaded processor can beat a multicore design—to 
a point, at least—after accounting for the extra die area and 
power consumption of a multicore chip. Both approaches 
rely on finding enough parallelism in the software to justify 
the additional hardware.

Table 3 compares the M IPS32 34K processor with 
the M IPS32 24KE, ARC  700, ARM C  ortex-A8, T ensilica 
Xtensa 6, and T ensilica Xtensa LX. A ll are licensable 32-
bit embedded-processor cores, and all are the highest-	
performance examples of their architectures. If low power 
is more important than high throughput, ARC, ARM, and 
MIPS offer much smaller cores than those shown here, and a 
minimal configuration of Tensilica’s cores will serve the same 
purpose. We derived the core sizes and power numbers in the 

table from the best available vendor data, but take them with 
a grain of silicon—there are too many variables to support 
quick conclusions. With the exception of the Cortex-A8, all 
these cores have numerous configuration options that greatly 
affect their size and power.

Multithreading makes the 34K unique among licens-
able processor cores. B ut customers want performance, 
not novelty. Last year, ARM  encroached on M IPS’s high-	
performance territory with the superscalar C ortex-A8, 
and now MIPS is responding with the multithreaded 34K. 
Without a doubt, superscalar pipelining is the better-under-
stood technology. E ven undergraduate computer-science 
students write compilers for superscalar microarchitectures. 
Simultaneous multithreading is less understood and poses 

P r i c e  &  Av a i l a b i l i t y

MIPS Technologies is licensing the MIPS32 34K fam-
ily of processor cores now. The four members of the 
family are the 34Kc, 34Kf, 34Kc Pro, and 34Kf Pro. 
All are available as synthesizable IP in Verilog. Like 
most processor-IP vendors, MIPS doesn’t disclose 
up-front license fees or chip royalties, which are 
negotiable. For more information about the MIPS32 
34K family, visit www.mips.com/content/Products/
Cores/32-BitCores/MIPS3234K/ProductCatalog/P_
MIPS3234KFamily/productBrief.

Table 3.  All these processors are high-performance IP cores based on 32-bit RISC architectures. Their pipelines reveal the starkest differences. 
Most processors in this class have simple uniscalar pipelines, but MIPS has introduced the first core with simultaneous multithreading, whereas 
ARM is aiming for high performance with two-way superscalar execution. ARC and Tensilica rely more heavily on user-defined application-specific 
extensions. Core-size and power-consumption numbers are vendor estimates, based mostly on simulations. *The ARC 700 has some built-in DSP 
instructions; more powerful extensions are optional. †Assumes a generic 130nm fabrication process. ‡Assumes a generic 90nm process. **Assumes 
a generic 65nm process.
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a greater challenge for programmers wanting to make the 
most of the 34K’s best capabilities.

However, multithreading is more versatile than supers-
calar execution. As implemented in the 34K, it allows a pro-
cessor to execute multiple threads with strict task isolation, 

to run multiple operating systems, to instantly switch con-
texts, and to precisely allocate clock cycles among various 
tasks—extremely valuable capabilities for embedded appli-
cations. T he 34K is unique for a purpose. It’s a significant 
advance for embedded-processor cores. 

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com


