
	 © I n - S t a t 	 F e b r u a r y 2 7 , 2 0 0 6 	 m i c r o p r o c e ss o r r e p o r t

more are available in embedded-processor cores licensed as
synthesizable intellectual property (IP). Now MIPS Technol-
ogies is adding another option: the first licensable processor
cores with hardware-enabled simultaneous multithreading.

The new M IPS32 34K family consists of four 32-bit
processor cores, all related to the M IPS32 24KE family
introduced at Spring P rocessor Forum 2005. (See MPR
5/31/05-01, “White P aper: T he M IPS32 24KE C ore Fam-
ily.”) The key difference between the 24KE and 34K families
is pipelined multithreading. Instructions from as many as
five different tasks can pass through the nine-stage pipeline
of a 34K processor at the same time.

Although the uniscalar 34K can issue only one result
per clock cycle, multithreading allows it to reduce the
overhead of context switching and hide the latency of slow
operations, such as memory-dependent loads and stores.
This technique is known as simultaneous multithread-
ing (SMT) or thread-level parallelism. N ote that for the
purposes of this discussion, a thread can be any executable
process—even an operating system—not just a microthread
within a program.

Multithreading Reaches a Watershed
MIPS isn’t the first company to use SMT, which dates to the
early 1990s. (See MPR 7/14/97-03, “Multithreading Comes
of Age.”) In 1999, DEC announced that Alpha 21464 server
processors would use SMT, but Alpha’s unpopularity and
premature demise did little to promote the technology. (See

MPR 12/6/99-01, “Compaq C hooses SMT for A lpha.”) In
2001, Intel brought SMT to the mainstream by announcing
Hyper-Threading, a limited two-way version of thread-level
parallelism that has appeared in several P entium 4 and
Xeon processors for PCs and servers. (See MPR 9/17/01-01,
“Intel Embraces Multithreading.”)

More recently, embedded-processor architects have
seized upon SMT as a power-efficient path to higher perfor-
mance. That’s the big attraction for MIPS. Multithreading
avoids the pipeline duplication of superscalar execution
and the core duplication of multicore processing, although
it may be combined with those and other techniques.
In addition, thread-level parallelism is easy to exploit in
many kinds of embedded software. Those advantages led a
startup, Ubicom, to introduce a tiny multithreaded packet
processor in 2003. (See MPR 4/21/03-01, “Ubicom’s N ew
NPU Stays Small.”)

In 2005, the technology reached a watershed when
Intel, Raza Microelectronics (RMI), and Sun Microsystems
introduced powerful processors that combine multithread-
ing with multiple cores, which is called chip multithreading
(CMT). (See MPR 5/9/05-01, “A Day A t the R aces,” MPR
5/17/05-01, “A N ew M IPS P owerhouse Arrives,” and MPR
1/3/06-01, “Sun’s Niagara Begins CMT Flood.”)

Not until now, however, have ASIC and SoC develop-
ers been able to license a multithreaded embedded-processor
core for their own chip designs. T he M IPS32 34K family
fulfills a promise made at M icroprocessor Forum 2003,

MIPS Threads the Needle
MIPS32 34K: The First Licensable Multithreaded Processor Core

By Tom R. Halfhi l l {2/27/06-01}

Microprocessor architects have explored many paths to high performance, includ-

ing high clock frequencies, superscalar pipelines, application-specific extensions, very

long instruction words (VLIW), and multicore processors. A ll those techniques and

reportM i c r o p r o c e s s o r
	 	T h e i n s i d e r ’ s g u i d e t o m i c r o p r o c e s s o r h a r d w a r e 	

www.MPRonline.com

� MIPS Threads the Needle

	 © I n - S t a t 	 F e b r u a r y 2 7 , 2 0 0 6 	 m i c r o p r o c e ss o r r e p o r t

when M IPS announced the multithreading application-
specific extension (MT A SE) for future M IPS processors.
(See MPR 11/10/03-01, “Multithread T echnologies Dis-
closed at MPF.”) MIPS says multithreading can dramatically
improve performance while preserving compatibility with
existing single-threaded software.

MIPS has already licensed the 34K to five customers,
two of which prefer to remain anonymous for now. T he
public customers are iVivity, M obileye, and PMC -Sierra.
Georgia-based iVivity makes storage processors. Mobileye,
based in the Netherlands, is integrating a 34Kf core into its
future EyeQ-2 chip, an embedded controller for automotive
collision-avoidance systems. PMC -Sierra, based in Silicon
Valley, is a longtime MIPS licensee that will most likely use
the 34K in high-performance network and communica-
tions processors.

34K Family Resembles 24KE
MIPS is introducing four members of the MIPS32 34K fam-
ily, consistent with previous variations within the 24KE, 24K,
and 4KE families of 32-bit embedded-processor cores. A s
Table 1 shows, all four new processors share the same basic
CPU core, with DSP extensions inherited from the 24KE
family. Variations within the 34K family include an optional
FPU plus the option of adding user-defined extensions—a
Pro Series feature that M IPS calls C orExtend. (See MPR
3/3/03-01, “MIPS E mbraces C onfigurable T echnology.”)
Both features affect the core’s size and power consumption.

The simplest MIPS32 34K core is the 34Kc, which has
neither an FPU nor CorExtend. Next comes the 34Kf, which
has an FPU, again without C orExtend. T he 34Kc P ro has
CorExtend but no FPU. T he highest-end core is the 34Kf
Pro, which has both an FPU and CorExtend. Thanks to the
MIPS architecture’s workstation/server heritage, the optional
FPU available for these cores is one of the best available for
a licensable embedded processor. It supports single- and
double-precision floating-point math and complies with
the IEEE 754 standard. CorExtend is a powerful option, too,
although the configurable-processor technology from com-
petitors ARC International and Tensilica is superior.

SMT is the feature that distinguishes the 34K from all
other licensable embedded-processor cores. MIPS took pains
to add this capability without disrupting the well-established
MIPS architecture or exceeding the power envelope expected
of an embedded processor. P erhaps the most critical deci-
sion was the number of threads to support. In theory, the
number of simultaneous threads is limited only by the depth
of the pipeline, because at any moment, each pipe stage can
be processing an instruction from a different thread. How-
ever, the maximum number of threads isn’t necessarily the
optimal number, especially for an embedded processor. Each
thread requires a duplicate register file, program counter,
and other structures to store its context while the processor
switches from one thread to another. This overhead inflates
the processor’s gate count and power consumption.

At design time, customers may configure the 34K to
support two to five simultaneous threads. (Although a
single-threaded implementation is possible, the 24KE
is a better choice for applications needing only one
thread.) T he maximum of five threads seems odd,
because it requires a three-bit thread pointer, which
could support as many as eight threads. MIPS is prob-
ably limiting current implementations of the 34K to five
threads while preserving the option of supporting six,
seven, or eight threads in future processors.

Each thread requires what M IPS calls a thread
context: a separate instantiation of all the structures
needed to hold the user-level state information of a pro-
cess. E ach thread context has an independent program
counter and a complete set of programmer-visible regis-
ters. In the MIPS32 Release 2 instruction-set architecture
(ISA), there are 32 general-purpose registers (GPR), 32
bits wide, plus a 64-bit “hi/lo” accumulator for saturating
arithmetic. MIPS32-R2 allows developers to implement
one or more shadows of each GPR to support vectored
interrupts or external interrupt controllers. T he DSP
extensions carried forward from the 24KE add three
more 64-bit accumulators and one 32-bit control register
to the ISA. In addition, the 34Kf and 34Kf Pro cores have
32 floating-point registers, 64 bits wide.

With so much user-level state to replicate for
each thread context, it’s easy to see why determining
the optimal number of simultaneous threads isn’t a

������� ������ ������ ������ ������
���� ���� �������� ��������

������������ ��������� ��������� ��������� ���������
�������� ��� ��� ��� ���
������������� ��� ��� ��� ���
�������������� �������� �������� �������� ��������
������� ��� ��� ��� ���
������� ����� ����� ����� �����
������� ����� ����� ����� �����
��� ��� ��� ��� ���
��������������� ��������� ��������� ��������� ���������
������������� ������� ������� ������� �������

������ ������ ������ ������
��������������� ����������� ����������� ����������� �����������
��������������� � ��� � ���
������� ��� ��� ��� ���
��������� � � ��� ���
���������������� ������ ������ ������ ������
���������������� ������ ��� ������ ���
�������������� ����� ��� ����� ���
����������� ���� ����
������������ ��� ��� ��� ���

Table 1. Members of the new MIPS32 34K family have most features in
common, differing only by whether individual members have an FPU and/or
CorExtend. Clock frequencies and power-consumption estimates in this table
assume a core supply of 1.0V and a generic 90nm CMOS fabrication process
under worst-case conditions. The estimated core size—extracted from a full-
layout GDSII database—excludes caches and assumes a configuration support-
ing four simultaneous threads. Core-size and power-consumption estimates for
the FPU-equipped processors are not available (n/a) but will be slightly greater
than for the 34Kc.

�MIPS Threads the Needle

	 © I n - S t a t 	 F e b r u a r y 2 7 , 2 0 0 6 	 m i c r o p r o c e ss o r r e p o r t

casual decision. Developers
working with the 34K need
to weigh the performance
improvements of multi-
threading against the cost
of the extra logic (more on
this later). A n automated
processor-configuration
tool directs the logic com-
piler to add the structures
necessary for each thread
context.

Threading the Needle
Pops Bubbles
Figure 1 sums up the advantages of SMT explained in
more depth in previous articles. Normally, a context switch
forces a processor to flush its pipeline and begin fetching
instructions from the new context. E ven without a con-
text switch, pipelines can suffer from bubbles (empty pipe
stages) when a slow operation stalls execution. In particular,
cache misses create pipeline bubbles when slow external
memory forces the processor to wait for a load operation to
complete. Another common source of pipeline bubbles is a
mispredicted branch instruction. No matter what the cause,
bubbles and pipeline flushes waste valuable clock cycles. An
SMT processor tries to avoid flushes and fill the bubbles by
inserting instructions from different threads.

In addition to the variable number of thread contexts,
another design-time option in 34K processors is what MIPS
calls a virtual processing element (VPE). This option allows
a 34K processor to run two independent operating environ-
ments simultaneously, each with its own threads. Each envi-
ronment could be an embedded OS—either two instances
of the same O S or two completely different operating
systems. Alternatively, one or both VPEs could support the
application software on “bare metal,” without any OS at all.
(Many embedded systems don’t need the complexity of an
OS or use a custom operating environment.)

To support each VPE, the processor duplicates all the
privileged registers and structures an OS might need. In other
words, a VPE holds all the OS-level state information of an
operating environment, just as a thread context holds all the
user-level state information of a thread. An example of OS-
level state is the MMU’s translation lookaside buffer (TLB)
or memory map. (As with previous MIPS32 processors, the
34K family allows developers to equip the MMU with either
a TLB or a fixed memory map for virtual addresses.)

VPEs provide a simple form of virtualization, much
like the virtualization technology now appearing in x86
server and desktop processors from AM D and Intel. (See
MPR 1/30/06-08, “This Technology Is Virtually Here Now.”)
One difference is that embedded OSes need fewer modifi-
cations to run within their virtual compartments on 34K
processors, because there’s no hypervisor software layer. To

an operating system, each VPE looks like a separate 34K
processor. O f course, many embedded applications don’t
need VPEs, but some applications can take advantage of this
feature. For example, one VPE could run secure processes,
such as encryption and electronic commerce, leaving the
other VPE to handle unsecure tasks. Or a need for reliability
could determine the division of labor.

Figure 2 shows how a typical embedded system might
use two VPEs. In this example, one VPE has two thread con-
texts, allowing it to run two simultaneous threads, while the
other VPE has three thread contexts, allowing it to run three
simultaneous threads. A lthough developers must choose
the maximum number of VPEs and thread contexts before
logic synthesis, the processor can dynamically allocate
threads to VPEs at run time. MIPS refers to this dynamic
allocation as “binding.”

One cost of using two VPEs is the overhead of their
additional logic: about 84,000 gates for both. A nother
potential cost is larger caches. B oth operating environ-
ments, each perhaps running multiple threads, must share
the same instruction and data caches. Developers choosing
the multiple-VPE option should run simulations with real-
istic workloads to determine if larger caches are necessary.

���� ������� ���������� ���� ���� ���� ���� ���� ���� ���� ���� �����������

���� ���� ���� ���� ���� ���� ������� ������ ���� ���� ���� �����������

���� ���� ������� ���������� ���� �����������������������������������

��� ���� ���� ���� ������� ������ ���� ���� ������� ������ ���� ���� ������� ������

����

Figure 1. In this graphical example of SMT, the top part of the illustration shows three color-coded instruction
streams representing different threads or processes. Each thread has gaps caused by cache misses during load
operations—gaps that would create unwanted bubbles in a conventional instruction pipeline. The bottom part
of the illustration shows how an SMT processor can fetch instructions from different threads to fill the gaps
and eliminate the bubbles. SMT requires instant (single-cycle) context switching without flushing the pipeline,
which in turn requires duplicate register files to preserve the state of each thread.

���������������
��

������ ����

��������� ��������� ��������� ��������� ���������
��

���� ����

�� �� �� �� ��

Figure 2. At design time, developers working with a 34K core can
choose to duplicate all the resources needed to run an embedded OS on
the processor, allowing it to run two operating systems simultaneously.
MIPS refers to each set of OS resources as a virtual processing element
(VPE). Each VPE can have one or more of its own thread contexts (TC),
up to a maximum of five per processor.

� MIPS Threads the Needle

	 © I n - S t a t 	 F e b r u a r y 2 7 , 2 0 0 6 	 m i c r o p r o c e ss o r r e p o r t

MIPS says normal-size caches are usually sufficient, because
the processor can fill the pipeline with instructions from a
different thread context after a cache miss.

To prevent cache thrashing—rarely a problem, accord-
ing to MIPS—programmers can lock individual cache lines
or assign individual ways to particular thread contexts.
Having the option of higher set-associativity might help in
this regard; currently, the 34K limits caches to four-way set-
associativity. Another alternative is to stash important code
or data in scratchpad RAM, which is a configurable option
for all 34K processor cores.

Thread-Priority Policies Are Configurable
Any SMT processor needs a method of assigning execution
priorities to threads. It’s particularly important for a mul-
tithreaded embedded processor, because embedded pro-
grams often have real-time constraints that cannot tolerate
thread starvation. To address the needs of as many applica-
tions as possible, MIPS allows customers to determine the
34K’s thread-priority policy.

The 34K’s default thread-priority manager obeys a
round-robin policy, which simply allocates an equal number

of clock cycles to each thread, one after the other. In a
two-threaded implementation of the processor, each
thread gets 50% of the available clock cycles; in the
maximum five-threaded implementation, each thread
gets 20%. (Actually, “thread priority” is an oxymoron
with a round-robin manager, because no thread enjoys
priority over any other thread.) The round-robin man-
ager is always built into the 34K core.

For more-sophisticated multithreaded applica-
tions, the 34K has an optional policy manager that’s user
programmable. T his design-time option adds a mere
5,000 gates to the core, so it’s an attractive option. The
programmable policy manager allows an OS, the appli-
cation software, or custom logic to allocate clock cycles

to different threads in various predefined ways. Further-
more, software programmers and logic designers can define
their own methods of managing and assigning priorities.
The programmable policy manager is obviously the most
flexible thread-priority solution, because it allows priorities
to change dynamically at run time, according to operating
conditions. Developers must decide whether the program-
mable manager is worth the additional gates—the decision
is immutable after the design is committed to silicon.

As T able 2 shows, M IPS has added only eight new
instructions to the MIPS32-R2 ISA to support multithread-
ing. M ost of the instructions are self-explanatory: they
enable or disable multithreaded execution, VPEs, or thread
contexts. T wo instructions (MTTR and MFTR) are special
privileged operations that allow a kernel thread to access
the registers and other state information of a different
thread. (We will describe interprocess communications for
user-level software later.) T he ISA has no special registers
associated with multithreading itself, other than the usual
architectural registers for each thread context.

In addition to new instructions, the 34K also has new
instruction-dispatch queues and an extra stage near the front

of the pipeline. E ach thread context has an eight-
entry dispatch queue that holds recently fetched
instructions. (Branch instructions are decoded at
this point, but not most other types of instructions.)
These queued instructions wait until the thread-
priority manager approves their dispatch to a func-
tion unit. T he new pipeline stage, inserted after stage
2, assigns each instruction to a thread context. A s
Figure 3 shows, the 34K pipeline is nine stages deep,
compared with eight stages in the 24KE.

What Figure 3 doesn’t show is the pipeline
detour for M IPS16e instructions. Like almost all
32-bit embedded processors, the 34K has a subset
of 16-bit instructions for conserving memory.
Supporting 16- and 32-bit instructions in a multi-
threaded processor caused some headaches for the
34K’s designers (“We almost caught our hair on
fire,” the engineering director told MPR), but they
found a solution.

������
���

�� �� ��

������������������
������������������

��� �������������

�� �� �� �� �� ����
��
��
��

��
��

��
�����

��

��
�����

Figure 3. The MIPS32 34K and 24KE processors are close cousins, but the 34K
has a slightly deeper pipeline to support simultaneous multithreading. The 34K’s
extra stage—here labeled IT (instruction-fetch third)—assigns a thread context to
the most recently fetched instruction. This assures that instructions from different
threads always reference the correct registers and other state information associ-
ated with their contexts.

����������� ����������� ��������
��� ��������������������� �
��� ���������������������� �
���� ���������� �������������������������������
���� ����������� �
���� ��������������������� �
����� ���������������������� �
���� ����������������������� �����������������������������������
���� ������������������������� ������������������������������������

Table 2. MIPS32 34K processors add eight new instructions to the MIPS32
Release 2 instruction-set architecture. These instructions allow programmers to
enable or disable multithreading, enable or disable the optional virtual process-
ing elements (VPE), enable or disable individual threads, and access registers in
different thread contexts.

�MIPS Threads the Needle

	 © I n - S t a t 	 F e b r u a r y 2 7 , 2 0 0 6 	 m i c r o p r o c e ss o r r e p o r t

Every fetch from the instruction cache brings 64 bits
into the pipeline—either two 32-bit instructions or four 16-
bit instructions. If a particular thread is running in MIPS16e
mode, it detours through a subpipeline for two extra stages:
IR (instruction recode) and IK (instruction kill). In those
stages, the processor expands 16-bit instructions into 32-bit
operations. The subpipeline rejoins the normal pipeline at
the new IT stage. At that point, all the instructions begin
entering the thread-dispatch queues.

Two Methods of Interthread Communication
Sometimes it’s necessary for threads to communicate with
each other by passing parameters back and forth. However,
application-level threads cannot communicate directly,
because instructions in one thread context aren’t allowed
to access registers in another context. (The previously
described MTTR and MFTR instructions are privileged kernel-	
level instructions.) For that reason, the 34K provides two
general methods for interthread communication.

One method is already available in all M IPS-compatible
processors: the common load-link/store-conditional (LL/
SC) instruction sequence. This is a substitute for an atomic
read-modify-write operation, which is more often found in
CISC instruction sets. In an LL/SC sequence, the processor
executes a load-link instruction, which returns the value
currently stored at a particular memory location. Next, the
processor executes a conditional store instruction, which
stores a new value at the location only if another thread
hasn’t changed the value since the load-link. U sing this
method, multiple threads can pass parameters by using
memory locations as mailboxes.

The drawback of the LL/SC method is that it’s not
truly atomic—another thread can easily change the value
between the moments of the load-link and the conditional
store. P rograms must repeatedly try to execute the LL/SC
sequence within a loop until it completes. When several
threads are active, all of them looping in this manner, they
can compete with each other and waste numerous clock
cycles on their initial load-links.

For that reason, the 34K offers an alternative: an
interthread communication unit with lockable mailboxes.
This is a configurable design-time option. T he mailboxes
are memory-mapped 32-bit-wide locations that programs
can access with standard load/store instructions. Although
mailboxes appear to have conventional memory addresses,
they are synthesized as flip-flops in the core. At design time,
developers can configure the mailboxes as single-entry slots
(like registers) or as FIFO buffers. MIPS provides reference
code for up to 16 single-entry mailboxes or up to 16 four-
entry FIFOs, but Verilog-savvy developers can create any
number of mailboxes or FIFOs they need.

When a thread reads a mailbox (using a normal
load instruction), the processor blocks other threads from
accessing the mailbox—the memory address is locked. Only
one thread at a time can win the lock. When the winning

thread finishes writing a new value into the mailbox (using
a normal store instruction), the processor unlocks the mail-
box and allows other threads to compete for the lock. This
method saves clock cycles over the LL/SC method, because
a locked mailbox prevents other threads from executing
their initial load-link instructions, so they don’t waste time
reading a mailbox they’re not allowed to modify. In effect,
the locking mailboxes bring an atomic read-modify-write
capability to the MIPS architecture for the first time.

Making Performance Trade-Offs
SMT can add almost 200,000 gates to a 34K processor, espe-
cially if developers lavishly indulge in all the fancy options:
the maximum of five thread contexts, the maximum of
two VPEs, a programmable thread-priority manager, an
interthread communication unit, and numerous mailboxes.
Not to mention all the other options available for the 34K:
a sophisticated FPU, C orExtend, a coprocessor interface,
scratchpad memory, and T LBs instead of fixed memory
maps for the MMUs.

Anyone who has shopped for a new car knows the feel-
ing. The question is whether the higher performance is worth
the additional design complexity, silicon, and power con-
sumption. Does the application call for a Lotus or a Prius?

Although the 34K leans toward high throughput, not
low power consumption, multithreading adds new twists
to the equation. In some embedded applications, a multi-
threaded 34K processor might replace two or more smaller
processor cores, resulting in lower overall system power.
This is particularly likely if the 34K has two VPEs, allow-
ing it to run two different operating systems or to strictly
isolate two different tasks. Also, keep in mind that the 34K
has the same DSP extensions and CorExtend options that
the 24KE has. With its signal-processing features and some
well-crafted application-specific instructions, the 34K could
make a separate DSP or ASIC redundant.

SMT allows a processor to do more work at a given
clock speed, so a multithreaded 34K processor could save
power over a single-threaded 24KE processor running the
same workload at a higher clock speed. Even after accounting
for the additional logic SMT requires, the lower-frequency
34K chip could be about the same size as the higher-	
frequency 24KE chip, because slower memory arrays are
denser than faster memories.

Another consideration is that a 34K could save power
by using the thread-priority manager to allocate just
enough clock cycles for a real-time task, instead of running
at a higher frequency to guarantee real-time performance
under any conditions. In sum, developers can use SMT
to achieve higher overall throughput, lower overall power
consumption, or a combination of both goals.

Measuring the Cost of Performance
MIPS has some benchmark results favorably comparing the
performance of a dual-threaded 34K with a single-threaded

� MIPS Threads the Needle

	 © I n - S t a t 	 F e b r u a r y 2 7 , 2 0 0 6 	 m i c r o p r o c e ss o r r e p o r t

24KE. N aturally, one would expect M IPS to choose an
example showing the 34K in the best light, but the bench-
marks are interesting nonetheless. For this test, MIPS com-
pared a 24KE processor with a similarly configured 34K
processor that has two VPEs and two thread contexts. Both
processors had 16KB instruction and data caches. The test,
conducted on a cycle-accurate instruction-level simulator,
consisted of two packet-processing programs. As Figure 4
shows, the 34K was 60% faster than the 24KE.

Another interesting result of this test was that the 34K
missed the cache slightly more often than the 24KE did.
The 34K’s miss rate was 5.16%, compared with 4.41% for
the 24KE. (Those miss rates are much lower than would
be expected when running real-world software, probably
because there wasn’t enough packet data to fully exercise

the memory system.) Despite the 34K’s slightly higher miss
rate, it managed to execute 0.61 instructions per cycle (IPC)
in this test, compared with only 0.37 IPC for the 24KE.
These statistics suggest two conclusions. The 34K probably
missed the cache more often because its two threads shared
a cache no larger than the single-threaded 24KE’s cache
(16KB). But multithreading worked as intended: when the
34K suffered a cache miss, it was able to execute instructions
from its other thread.

CPU architects can do many things to improve the
performance of a processor, but is the improvement worth
the extra gates? In this (admittedly limited) example,
the answer is yes. T he dual-threaded 34K processor was
60% faster than the single-threaded 24KE processor, but
it requires only about 14% more silicon. T his estimate is
based on gate counts extracted from post-layout models of
both cores as configured for the packet benchmarks. Using
die-area data that MIPS provided for a 0.13-micron fabrica-
tion process, MPR calculates that this configuration of the
34K core has 694,000 gates, and the similarly configured
24KE core has 607,000 gates.

Note that caches alone account for the area-equivalent
of 290,000 of those gates, and the common hardware in the
CPU cores is 250,000 gates. The important data is the extra
logic required to support multithreading. MPR estimates
that the threading logic (such as the thread-policy manager
and interthread communication unit) adds 14,000 gates;
the structures required for O S-level state information in
two VPEs add 40,000 gates; and the structures required
for user-level state information in two thread contexts add
23,000 gates. Figure 5 shows a breakdown of the gates in the
34K and 24KE cores, based on their configurations for the
packet benchmarks.

Alternative Paths to High Performance
With the 34K processor, MIPS is taking a very different path
to higher performance than other processor-IP vendors are
taking. The 34K is the world’s first licensable multithreaded
embedded-processor core, and it’s also the most configu-
rable core available from MIPS. In contrast, ARM’s highest-	
performance processor core, the new C ortex-A8, bets on
two-way superscalar pipelines instead of multithreading.
ARC and T ensilica are strong believers in user-defined
extensions—a capability available in some MIPS processors,
including the 34K Pro series, but not as heavily promoted
by MIPS. All four companies have customers using multi-
core designs to reach higher performance.

At first glance, it’s surprising that M IPS has chosen
multithreading over superscalar execution. Today’s embed-
ded MIPS processors are descendants of the MIPS worksta-
tion/server processors of the late 1980s and 1990s. M IPS
introduced its first single-chip superscalar processor, the
R10000, in 1995. The R10000 was a four-way out-of-order
design with speculative execution, still impressive 11 years
later. C onsidering that history, one might expect M IPS to

���������
�����

��������
�����

����������
�����

��������

������
������

���������� �����������

�������

�������

�������

�������

�������

�������

�������

�������

�

�������������������������������

Figure 5. This chart shows the number of gates required for two simi-
larly configured 34K and 24KE processor cores—the same configurations
MIPS used to obtain the benchmark results in Figure 4. With two thread
contexts and two VPEs, the 34K core has 14% more gates than the
single-threaded 24KE, but it’s 60% faster in the packet-processing tests.

����������

�������

�������

�������

�������

�������

������

�

����������������������������

�����������

Figure 4. MIPS ran a packet-flow test and a packet-forwarding test
(open shortest path first) on simulations of similarly configured 34K
and 24KE processors. Parallelism is relatively easy to exploit in packet
forwarding, which plays to the strength of the multithreaded 34K. This
chart shows the number of clock cycles required to complete the tests,
so a shorter bar is better—the 34K is 60% faster than the 24KE.

�MIPS Threads the Needle

	 © I n - S t a t 	 F e b r u a r y 2 7 , 2 0 0 6 	 m i c r o p r o c e ss o r r e p o r t

use the familiar technique of superscalar pipelining instead
of a less popular technique like multithreading.

However, M IPS concludes that SMT is a more gate-
efficient path to higher performance than superscalar
execution is. Perhaps this reflects MIPS’s greater experience
with superscalar design. (The C ortex-A8 is ARM ’s first
superscalar core.) B oth approaches have significant over-
head in extra logic—duplicate pipelines for superscalar,
duplicate register files for multithreading. But multithread-
ing can deliver more bang for the buck than superscalar
can, especially in an embedded processor. And the ability to
switch contexts in a single clock cycle without flushing the
pipeline has obvious advantages in real-time systems.

Multicore processors have even more duplication than
superscalar or multithreaded processors, because they rep-
licate entire cores, not just pipelines or registers. MIPS says
a multithreaded processor can beat a multicore design—to
a point, at least—after accounting for the extra die area and
power consumption of a multicore chip. Both approaches
rely on finding enough parallelism in the software to justify
the additional hardware.

Table 3 compares the M IPS32 34K processor with
the M IPS32 24KE, ARC 700, ARM C ortex-A8, T ensilica
Xtensa 6, and T ensilica Xtensa LX. A ll are licensable 32-
bit embedded-processor cores, and all are the highest-	
performance examples of their architectures. If low power
is more important than high throughput, ARC, ARM, and
MIPS offer much smaller cores than those shown here, and a
minimal configuration of Tensilica’s cores will serve the same
purpose. We derived the core sizes and power numbers in the

table from the best available vendor data, but take them with
a grain of silicon—there are too many variables to support
quick conclusions. With the exception of the Cortex-A8, all
these cores have numerous configuration options that greatly
affect their size and power.

Multithreading makes the 34K unique among licens-
able processor cores. B ut customers want performance,
not novelty. Last year, ARM encroached on M IPS’s high-	
performance territory with the superscalar C ortex-A8,
and now MIPS is responding with the multithreaded 34K.
Without a doubt, superscalar pipelining is the better-under-
stood technology. E ven undergraduate computer-science
students write compilers for superscalar microarchitectures.
Simultaneous multithreading is less understood and poses

P r i c e & Av a i l a b i l i t y

MIPS Technologies is licensing the MIPS32 34K fam-
ily of processor cores now. The four members of the
family are the 34Kc, 34Kf, 34Kc Pro, and 34Kf Pro.
All are available as synthesizable IP in Verilog. Like
most processor-IP vendors, MIPS doesn’t disclose
up-front license fees or chip royalties, which are
negotiable. For more information about the MIPS32
34K family, visit www.mips.com/content/Products/
Cores/32-BitCores/MIPS3234K/ProductCatalog/P_
MIPS3234KFamily/productBrief.

Table 3. All these processors are high-performance IP cores based on 32-bit RISC architectures. Their pipelines reveal the starkest differences.
Most processors in this class have simple uniscalar pipelines, but MIPS has introduced the first core with simultaneous multithreading, whereas
ARM is aiming for high performance with two-way superscalar execution. ARC and Tensilica rely more heavily on user-defined application-specific
extensions. Core-size and power-consumption numbers are vendor estimates, based mostly on simulations. *The ARC 700 has some built-in DSP
instructions; more powerful extensions are optional. †Assumes a generic 130nm fabrication process. ‡Assumes a generic 90nm process. **Assumes
a generic 65nm process.

������� ���� ���� ��� ��� ��������� ���������
���������� ����������� ������� ��������� �������� ���������

������������ ��������� ��������� ��������� ����� ������ ������
������������� ������������������� �������� �������� �������������� �������� ��������

��������������� ��������� ��������� ����������� ��������� ���������
�������������� �������� �������� �������� ��������� �������� �������������
�������������� ������� ������� ������� ������� � �
���������� ����� ����� ����� ������ ����� �����
���������� ����� ����� ����� ������ ����� �����
�������� � � � ���� � �
�������� � � � �������� � �
��������������� �������������� ���������������� ���� ��� ���� ����
������������ ������� ������� ������� ������� ������� �������
����������� ������� ������� ������� ������� ������� �������
�������������� ��� ��� ��������� ��� � ��������
��������������� � � � ��� � �
��� �������� �������� �������� �������� �������� ��������

���������� ���������� ������������� ���������� ������� �������
��� ��� ��� ��� ��� �������� �
��������� ������� ���� ������ ������������� ����������� �����������
���������������� ������������� ������������������ ��������� ������������ ��������� ���������
��������� ������� ������������ ������� ������� ������� �������
������������ ���� ���� ���� ���� ���� ����

� MIPS Threads the Needle

	 © I n - S t a t 	 F e b r u a r y 2 7 , 2 0 0 6 	 m i c r o p r o c e ss o r r e p o r t

a greater challenge for programmers wanting to make the
most of the 34K’s best capabilities.

However, multithreading is more versatile than supers-
calar execution. As implemented in the 34K, it allows a pro-
cessor to execute multiple threads with strict task isolation,

to run multiple operating systems, to instantly switch con-
texts, and to precisely allocate clock cycles among various
tasks—extremely valuable capabilities for embedded appli-
cations. T he 34K is unique for a purpose. It’s a significant
advance for embedded-processor cores. 

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

