
©  I N - S T A T J U L Y  2 4 , 2 0 0 6 M I C R O P R O C E S S O R  R E P O R T

despite the higher unit cost of a programmable-logic
device. And the flexibility of making field upgrades without
replacing an ASIC or SoC can be very attractive for some
applications.

This trend would seem to favor more FPGA start-
ups. However, two big companies—Altera and Xilinx—
dominate the FPGA market, leaving room for only a few
smaller players to carve out a niche. Finding paths around
the Big Two has become a challenge. One company taking
up the challenge is MathStar, founded in 1997 and based in
Hillsboro, Oregon.

Microprocessor Report first wrote about MathStar in
2003, when the fabless semiconductor company unveiled its
reconfigurable-processor technology at our Fall Micro-
processor Forum. (See MPR 12/15/03-03, “Roll Your Own
Array Processor.”) MathStar sampled the first device based
on that technology in September 2004 and revised it several
times in response to customer feedback. Samples of the
improved chip became available in August 2005, and Math-
Star is working on a second chip for delivery next year.

The long incubation hasn’t been wasted. MathStar
went public last October (Nasdaq: MATH), raising $27.6
million. Also, the company says it has landed 12 design
wins—an impressive debut for an unorthodox product.
One win is Honeywell, which is porting a MathStar design
to a radiation-hardened fabrication process for aerospace
systems.

Object Arrays, Not Gate Arrays
MathStar calls its device architecture a field-programmable
object array (FPOA). It consists of SRAM-based program-
mable logic, much like a conventional FPGA, but it’s pro-
grammable at a higher level of abstraction. Instead of tin-
kering with gate arrays, designers work with a massively
parallel array of preconfigured function units.

Most of these units are identical ALUs or multiply-
accumulate (MAC) units that can run autonomously. Oth-
ers are register files shared by the ALUs and MACs. The first
FPOA device has 400 of these 16-bit units woven together
in a tightly coupled interconnect fabric. Around the periph-
ery of the chip are SRAM banks, external memory inter-
faces, high-speed parallel I/O ports, and general-purpose
I/O (GPIO) ports.

What’s missing is a control processor. An FPOA requires
some kind of host controller, such as a RISC processor or
microcontroller. This requirement puts the FPOA in a gray
area between FPGAs and full-fledged microprocessors. It’s a
fully programmable machine, but it needs an external con-
troller to initially load the bitstream and retrieve the results.
Most FPGAs need host controllers, too, although some have
hard processor cores on chip, and others have enough capac-
ity to implement a soft processor core in their gate arrays.

By preconfiguring the FPOA with custom-designed
function units, MathStar says it can achieve higher perform-
ance than an FPGA with generic programmable logic. The

MATHSTAR CHALLENGES FPGAS
New Reconfigurable-Logic Chips Have Massively Parallel Arrays

By Tom R. Halfhi l l  {7/24/06-02}

Project managers searching for less costly alternatives to ASICs and SoCs are increasingly turn-

ing to FPGAs. If the anticipated volumes of the finished product aren’t too great, FPGAs can

save millions of dollars in nonrecurring engineering (NRE) expenses and chip manufacturing,

REPORTM I C R O P R O C E S S O R
T H E  I N S I D E R ’ S  G U I D E  T O  M I C R O P R O C E S S O R  H A R D W A R E

www.MPRonline.com



2

company’s first device, the MOA1400D, runs as fast as
1.0GHz—much faster than a conventional FPGA. Because
each of the 400 function units can perform one operation per
clock cycle, the maximum theoretical throughput is 400 bil-
lion operations per second (BOPS). Moreover, MathStar
guarantees that the device always runs at its maximum clock
rate. That’s a big advantage over conventional FPGAs, which
often must run at a clock rate slower than their maximum
frequency when programmers implement a complex design
in the gate array.

Another advantage of MathStar’s architecture is that
it’s suitable for fabrication in a mature CMOS process that
doesn’t suffer from the current leakage of the latest, most
expensive processes. TSMC manufactures the MOA1400D in
its 0.13-micron low-voltage process (LVOD), which holds
typical power below 20W when running major applications.
The fastest 1.0GHz devices will cost $285 in 1,000-unit
quantities.

Building Blocks Are ‘Silicon Objects’
It’s obvious that MathStar put some thought into the FPOA
architecture. The basic building blocks of the array are the
16-bit function units and register files, which MathStar
refers to as Silicon Objects (trademarked, no less). These are
full-custom logic blocks, not standard cells or synthesized
models in generic gate arrays. Custom circuit design enables
higher clock frequencies while conserving silicon and

power. Figure 1 shows the three types of Silicon Objects
populating the first FPOA chips.

Each Silicon Object is exactly the same physical size
and has the same I/O interfaces to the interconnect fabric, so
they are interchangeable within the array. That is, MathStar
can create new FPOA chips with arrays of different dimen-
sions and different complements of Silicon Objects. Once
created, the array is fixed for that device; customers can pro-
gram the array but cannot alter its arrangement or comple-
ment of Silicon Objects. In this respect, an FPOA is more like
a massively parallel microprocessor than a bucket-of-gates
FPGA. Its programmable logic is programmable at a higher
level, closer to the application software, rather than at the
logic-gate level.

Higher-level programmability implies less flexibility.
However, an FPOA is more than a massively parallel array of
16-bit function units. The tightly woven interconnect fabric
allows designers to gang the Silicon Objects together in ways
that aren’t possible with multiple function units in a conven-
tional processor. In this respect, an FPOA is more like an
FPGA than a microprocessor. For example, designers can
harness together multiple Silicon Objects to perform 32-bit
or wider operations, or to execute multiple tasks in parallel.
Alternatively, designers can link together chains of Silicon
Objects to execute serial tasks in a pipelined fashion. Whereas
an FPGA is a blank slate of logic gates, an FPOA is a blank
slate of function units, register files, and interconnects.

As Figure 2 shows, the MOA1400D has 256 ALUs, 64
MAC units, and 80 register files, for a total of 400 Silicon
Objects, arranged in a 20 × 20 array. All the ALUs are identi-
cal and always carry out their 16-bit operations in one clock
cycle. All the MAC units are identical and always carry out
their 16-bit operations at a pipelined rate of one per clock
cycle. All the register files are identical, with 64 entries of
20-bit registers per file. Registers are dual ported and can
store operands, intermediate results, or final results. Register
files can also function as circular FIFO buffers or dual-
ported general-purpose memories, depending on the needs
of the application. For additional data storage, the MOA-
1400D has 12 banks of internal RAM (IRAM) positioned at
the edges of the array. Each bank is 19KB in size, organized
as 2K × 76 bits, for a total of 228KB.

Although Silicon Objects operate on 16-bit data, their
datapaths are actually 21 bits wide. Each operand carries five
control bits that invoke combinatorial logic in the ALUs to
carry out various operations. One control bit is a “valid” bit,
which allows the ALUs to conditionally execute or condition-
ally bypass instructions. Registers don’t need to store the valid
bit, which is the reason they are 20 bits wide. MAC units don’t
have conditional instructions, so they ignore the valid bit.

ALUs support 38 possible instructions, and each ALU
has a local queue for storing eight instructions awaiting exe-
cution. Developers can program each ALU individually and
let it run autonomously. Some tight loops will fit entirely in a
single instruction queue, allowing the ALU to loop endlessly

©  I N - S T A T J U L Y  2 4 , 2 0 0 6 M I C R O P R O C E S S O R  R E P O R T

MathStar Challenges FPGAs

Figure 1. Initially, MathStar has created three types of Silicon Objects:
16-bit ALUs, 16-bit multiply-accumulate (MAC) units, and 64-entry
register files. Silicon Objects are designed to be interchangeable, so
different FPOA chips can have different complements of these objects
in their arrays.

1GHz Object Array
Silicon ObjectsTM

Building Blocks

ALU
Computing

Object

MAC
Multiplier

Object

RF
Memory
Object



3

without relying on an external instruction stream. That’s a
key advantage over conventional microprocessors, which
must constantly fetch instructions, even if the instructions
stay resident in a cache. If a task is too large for an eight-
instruction queue, developers can assign more ALUs to the
task—as many as needed. Because multiple ALUs can share
neighboring register files with zero latency, they can access
each others’ operands as local data without delays.

MAC units don’t have an instruction set, but the control
bits can reconfigure them on every clock cycle to perform a
16- × 16-bit multiply, accumulate, or multiply-accumulate.
(Another control option is to multiply signed 15-bit fixed
fractional numbers.) Multiplies execute in two cycles, and
accumulation requires an additional cycle, but pipelining
allows the unit to finish a MAC every cycle. The result of a
16- × 16-bit multiply is a 32-bit quantity, and accumulation
produces a 40-bit result. As mentioned before, developers can
gang together multiple MAC units to perform operations
wider than 16 bits.

Dense On-Chip Fabric Connects Objects
The most critical architectural feature of a massively paral-
lel processor is the on-chip network that links the computa-
tion units together. Without an efficient network, the chip’s
vast processing resources are wasted. The engineering trade-
offs are communications versatility, interconnect speed,
design complexity, and manufacturing cost.

Ideally, every node in a massively parallel array would
be able to communicate with every other node in a single
clock cycle. Unfortunately, the necessary wiring quickly gets
out of hand in a large array. Wire delays (signal propaga-
tion) are another limiting factor. More wiring and shorter
signal paths also inflate manufacturing costs, because they
often require additional metal layers and smaller, more-
expensive fabrication processes.

Consequently, massively parallel designs make compro-
mises. Generally, they allow nearby nodes to communicate in
one or a few clock cycles and require distant nodes to wait a
little longer. This, in turn, creates a challenge for developers or

©  I N - S T A T J U L Y  2 4 , 2 0 0 6 M I C R O P R O C E S S O R  R E P O R T

MathStar Challenges FPGAs

Figure 2. MathStar’s first FPOA chip, the MOA1400D, has a 20 × 20 array of Silicon Objects, including 256 ALUs, 64 MAC units, and 80 register files.
Future FPOAs may have larger or smaller arrays, as well as different complements of Silicon Objects, depending on their target applications.

16

GPIO

IRAM IRAM IRAM IRAM IRAMIRAMGPIO

IRAM IRAM IRAM IRAM IRAMIRAMGPIO

GPIO

Ctrl
Obj

HSIO
TX

JTAG
I/F

PROM
I/F

44
LVCMOS
100MHz

16LVDS
500MHz DDR

2GB/s

36

HSTL
266MHz DDR

2.4GB/s

44

LVCMOS
100MHz

XRAM

HSIO
RX

44

LVCMOS
100MHz

LVDS
500MHz DDR

2GB/s

XRAM

4436

GPIO
IRAM
XRAM
HSIO TX/RX

ALU
MAC
RF

Data
Control



4

the development tools they use. They need to map the soft-
ware onto the array in a manner that leverages the fast local
interconnects without losing too much performance when
making longer hops through the network.

MathStar has patented its interconnect technology, but
it’s generally similar to the interconnects in other massively
parallel processors. Each Silicon Object is a network node in
a dense wiring fabric that allows multiple function units to
share register files and communicate with other nodes at
various speeds, depending on their distance from each other.
(The entire fabric always runs at the chip’s maximum clock
speed, so distance is the only variable.) All the interconnects
are 21 bits wide, to carry the 16-bit operands and five con-
trol bits mentioned earlier.

The fastest connections in the FPOA fabric are called
nearest-neighbor links, which have zero latency. Each object
has eight of these links: one each for north, south, east, and
west, and one for each of the four diagonal directions. Actu-
ally, each connection has separate paths for input and out-
put, so there are 16 nearest-neighbor buses for each object.

For longer hops, MathStar provides a “party-line”
interconnect. Each object in the array has ten of these buses:
three north, three south, two east, and two west. Impres-
sively, the party-line connections allow an object to commu-
nicate with another object up to four nodes away in a single
clock cycle—only 1ns at 1.0GHz. The compromise is that
party lines don’t run diagonally, as nearest-neighbor lines do.
An object that’s three nodes away in a diagonal direction will
take two cycles to reach instead of one cycle. Still, that’s
pretty good for such a complex fabric. In the MOA1400D’s
20 × 20 array, the worst-case signal delay is a corner-to-corner
series of hops, which takes seven cycles. Figure 3 illustrates
the FPOA’s on-chip interconnects.

External I/O Has Room for Improvement
Off-chip I/O is sufficient but not luxurious. For main mem-
ory, the MOA1400D has two reduced-latency DRAM
(RLDRAM) controllers that can run as fast as 266MHz
(effective DDR). Each controller has a 36-bit data interface,
providing 2.4GB/s of maximum bandwidth. Programmable
clock divisors allow the RLDRAM controllers to run at
slower speeds if desired.

For high-speed parallel I/O, the MOA1400D has a pair of
transmit/receive ports using low-voltage differential signaling
(LVDS). Each transmit or receive port has a 16-bit data inter-
face and runs as fast as 500MHz (effective DDR), providing
about 4.0GB/s of aggregate bandwidth. For general-purpose
I/O, the MOA1400D has two banks of GPIO ports, each with
48 bidirectional pins and programmable speeds up to 100MHz.

There’s also a PROM controller and a JTAG interface
on chip. The PROM controller loads the configuration
image from external PROM at startup and initializes the
object array. Reconfiguring the entire array—including the
time it takes to preload the IRAM banks—requires 10–20ms.
If the IRAM is not preloaded, reconfiguring the array takes
only 2.5–5.0ms. That’s much faster than a comparable
FPGA. Reconfiguring a Xilinx Virtex-4 LX200, even without
preloading the IRAM, takes 250ms; the Virtex-4 SX55 takes
almost 500ms. MathStar’s JTAG interface provides another
way to configure the MOA1400D’s array, usually for verifica-
tion and debugging during development.

One missing feature is a dedicated DMA controller.
Although MathStar says developers can create one using only
seven Silicon Objects, that solution might not be acceptable if
an application needs all 400 objects for other purposes. In
addition, the MOA1400D lacks the integrated Ethernet ports
and other high-function I/O controllers found in some high-
end FPGAs. Inexpensive external controllers can fill those
roles, at the cost of increasing the system’s chip count.

MathStar has disclosed a second FPOA chip. Its array has
400 Silicon Objects, as the MOA1400D does, but the chip will
have faster external I/O and support a greater amount of
internal and external memory. The official announcement of
this device will reveal more details. MathStar says future FPOA
chips will probably integrate a DMA controller, new types of
objects, and support for next-generation memory and I/O.

Fabric Maintains Consistent Timing
An important feature of MathStar’s interconnect fabric is that
special development tools inherently know the signal-
propagation characteristics of the FPOA. Developers need not
worry about the low-level details of signal propagation
through the array. The tools automatically warn developers if
they try implementing an algorithm that can’t execute prop-
erly on the FPOA because of insufficient performance head-
room. Therefore, developers don’t have to achieve timing clo-
sure with these devices.

Consistent timing and early warnings about timing
problems are significant departures from conventional

©  I N - S T A T J U L Y  2 4 , 2 0 0 6 M I C R O P R O C E S S O R  R E P O R T

MathStar Challenges FPGAs

Figure 3. MathStar’s on-chip interconnect fabric allows nodes to com-
municate with neighboring nodes in any direction with zero latency.
Signals can travel as many as four hops in a single cycle, but diagonal
communications take longer. The FPOA fabric compares favorably with
the interconnects in other massively parallel devices.

Party Line Interconnect
• 10 per object
• Range of up to three objects away in one

clock cycle

Nearest Neighbor Interconnect
• Eight per object
• Range of one object (N/E/S/W, diagonals)

in one clock cycle

21-bit Interconnect Lanes
• 16 data bits
• Five control bits
• 1GHz speeds



5

FPGAs. Normally, FPGA developers must run the chip at a
slower clock rate to accommodate a more complex algo-
rithm. If they ramp down the FPGA’s clock speed too far, the
algorithm may not execute quickly enough for the target
application. To resolve the timing problem and achieve clo-
sure, developers must make last-minute adjustments to
bring the algorithm into line with the fastest clock speed the
FPGA can achieve. This tinker-and-test process is often frus-
trating, requiring several time-consuming iterations during
a late stage of the project.

In contrast, an algorithm’s complexity doesn’t affect the
clock frequency of an FPOA, and MathStar’s development
tools warn ahead of time if an algorithm is too complex to run
at that speed. A 1.0GHz FPOA will always run at 1.0GHz,
whereas a 500MHz FPGA might have to run at 250MHz. If a
complex algorithm won’t work at 1.0GHz and a faster FPOA
isn’t available or would cost too much for the target application,
the only recourse is to modify the algorithm—but at least the
developers will find out immediately, not later in the project.

MathStar says its higher-level tools accelerate develop-
ment in another way, too. FPGA tools work at the gate level,
whereas FPOA tools work at the Silicon Object level. FPOA
developers manipulate an object array of ALUs, MAC units,
and register files, not arrays of gates. Whether this difference
eases development, however, depends on the developer’s
point of view. MathStar prefers to compare FPOAs to FPGAs,
not to general-purpose processors, DSPs, SoCs, or program-
mable ASICs. MathStar’s comparison is fair, because, funda-
mentally, FPOAs are programmable-logic devices. If a devel-
oper’s reference point is an FPGA, then programming an
FPOA shouldn’t seem especially difficult.

But as the cost of programmable logic falls, and as the
cost of designing SoCs and ASICs rises, FPGA vendors are
increasingly pitching their devices as alternatives to custom
chips. Programming a general-purpose processor core or DSP
is very different than programming an FPGA. The former is
programmable in a high-level language like C or C++, or, at
worst, in assembly language. The latter requires a hardware-
design language (HDL)—a completely different skill.
Although programming the Silicon Objects in an FPOA is a
higher-level task than programming gate arrays, it too requires
an HDL. Don’t expect to port existing C or assembly-language
code to an FPOA simply by recompiling the source. This is a
job for hardware engineers, not for software programmers.

There’s another catch—again, from the viewpoint of
software coders. As mentioned before, MathStar’s develop-
ment tools inherently know the target FPOA’s clock timing
and signal-propagation characteristics. That’s good knowl-
edge, but a corollary is that HDL code compiled for one type
of FPOA may not be portable to another type. One array may
have a different number of Silicon Objects, or a different com-
plement of objects, or different clock timings. MathStar says
the HDL code will probably port to FPOAs having larger and
faster arrays, but it’s not guaranteed. Developers coming from
the FPGA world—MathStar’s target customers—probably

won’t consider this a problem. Developers accustomed to pro-
gramming DSPs and general-purpose processors may be
more intimidated.

No Need for Conventional Logic Synthesis
Despite those caveats, developing for an FPOA should be eas-
ier than developing for an FPGA. In addition to simplifying
the problem of timing closure or eliminating it altogether,
FPOAs eliminate the need for conventional logic synthesis—
or, at least, the gate-level logic synthesis required for FPGAs.

In an FPOA, the logic is already “synthesized” in the
form of Silicon Objects (which, as mentioned before, are
actually custom-designed logic blocks, not synthesized mod-
els or standard cells). Developers work at a somewhat higher
level of abstraction by programming the ready-made objects.
Although this still requires HDL, it’s one step removed from
gate-level programming and synthesis.

As Figure 4 shows, eliminating conventional logic syn-
thesis and some other steps related to gate-level design can
significantly shorten the development cycle. MathStar’s
front-end design tool is Summit Visual Elite, an electronic
system-level (ESL) tool from Summit Design, a MathStar
partner. Using Visual Elite, developers can create a solution
and a cycle-accurate simulation. Visual Elite also has co-
simulation capabilities, supporting models written in Ver-
ilog, VHDL, and C. When targeting an FPOA, its compiled
output is MathStar’s own proprietary language, Object
HDL, which resembles functional Verilog.

©  I N - S T A T J U L Y  2 4 , 2 0 0 6 M I C R O P R O C E S S O R  R E P O R T

MathStar Challenges FPGAs

Figure 4. MathStar’s development flow for FPOAs differs in two impor-
tant respects from development for an FPGA. There’s no need for con-
ventional logic synthesis, because developers manipulate prefabricated
Silicon Objects; and timing closure shouldn’t be an issue, because an
FPOA’s fixed clock frequency is independent of the design’s complexity.

Close Timing

FPGA

HDL Design &
Simulation

Logic Synthesis

Floor Planning

Gate Mapping

Placement

Detailed
Routing

Generate Load
Image

Download to
Target Device

FPOA

Design &
Verification

Floorplan
Objects

Generate Load
Image

Download to
Target Device

...and eliminates tedious
timing closure process

FPOA Design eliminates
RTL Synthesis step...



6

The next tool in the FPOA chain is MathStar’s COAST
(Connection and Assignment Tool), which maps the HDL to
the object array and defines the pathways through the inter-
connect fabric. Next, MathStar’s Object Compiler converts
the floor-plan map into an image suitable for downloading
into the FPOA. Finally, MathStar’s FPOA Debugger lets
developers perform in-circuit verification and real-time
debugging through the JTAG port. MPR has not worked
with these tools, but MathStar’s description seems reason-
able, and the whole process appears to be more streamlined
than conventional development on an FPGA.

Figure 5 shows how MathStar’s floor-planning tools
have mapped the logic for an MPEG-2 multistream video
decoder onto the 20 × 20 object array of the MOA1400D. This
design uses all but 80 of the chip’s 400 Silicon Objects. The
largest blocks of objects parse the data headers, handle motion
compensation, implement a variable-length decoder (VLD),
and accelerate inverse discrete cosign transforms (iDCT).
Additional blocks augment the on-chip external memory
controller and provide interfaces for video output and a host
processor. This design is reconfigurable at run time, so it can

decode up to four streams of standard-definition MPEG-2
video or one stream of high-definition MPEG-2 video.

The MPEG-2 decoder is part of MathStar’s Professional
Video Library, a package of licensable intellectual property
(IP) cores for FPOAs. These “cores” are preconfigured designs
for common applications, so developers won’t have to rein-
vent the wheel. Another package is the Machine Vision
Library, which includes a new JPEG2000 core capable of
encoding 200 megapixels per second when running in a
1.0GHz MOA1400D. MathStar claims it’s the fastest JPEG2000
encoder ever implemented in a single programmable-logic
device. Other cores in the Machine Vision Library include a
flat-field error-correction core, which is capable of processing
500 megapixels per second, and an RGB-to-YCC color-space
converter, which can process up to one gigapixel per second.
The company is working on additional cores.

Competitors: From A to X
FPOAs look like an attractive alternative to spinning custom
silicon, but MathStar prefers to position itself against
FPGAs. Indeed, MathStar envisions its technology as noth-

ing less than the future of programmable
logic. That lofty ambition pretty much nar-
rows the list of competitors to Altera and
Xilinx, which are virtually the alpha and
omega of programmable logic.

Certainly, there are other players in this
field, and some have interesting alternatives
to conventional FPGAs, too. One is Actel,
whose new Fusion chips combine flash-based
programmable logic with integrated mixed-
signal components, SRAM, and optional soft-
processor cores. (See MPR 12/19/05-02,“Actel
Releases First Fusion Chip.”) Another exam-
ple is Teja Technologies’ FPGA Platform, a
package of development tools, software, and
hardware IP that allows software engineers to
build a packet processor in an FPGA without
using HDL. (See MPR 4/3/06-02, “Teja’s
FPGA Play.”)

Massively parallel processors are even
more plentiful, although they usually don’t
have reprogrammable logic. Some examples
we have covered recently are Connex Tech-
nology’s 1,024-element video chip (see MPR
1/9/06-01, “Massively Parallel Digital
Video”); Elixent’s flexible D-Fabrix architec-
ture (see MPR 6/27/05-02, “Elixent Improves
D-Fabrix”); Silicon Hive’s configurable
processor cores (see MPR 6/20/05-01, “Busy
Bees at Silicon Hive”); and PicoChip Design’s
communications processors (see MPR
10/14/03-03, “PicoChip Makes a Big MAC”).
One massively parallel architecture quite
similar to MathStar’s is the NEC Dynamic

©  I N - S T A T J U L Y  2 4 , 2 0 0 6 M I C R O P R O C E S S O R  R E P O R T

MathStar Challenges FPGAs

Figure 5. Development tools from MathStar and Summit Design help automate the
process of configuring the massively parallel object array of an FPOA chip for the target
application. In this example, the tools have mapped a multistream MPEG-2 decoder onto
the array of the 1.0GHz MOA1400D processor, using 320 of the 400 available objects.
(Some objects within the outlined blocks either aren’t used or are reserved to add future
features or more performance.)

IDCT

IQ

VLD

Run Length
Expander

Motion
Compensation

XRAM
Controller

Out

M D

M

Motion
Vector

M

M

DInner
Memory
Loop &

Controller

VBV
Buffer

Controller Host
Interface

D

Header
Parser

Video
Out



7

Reconfigurable Processor (DRP), which can reconfigure its
512-processor array as often as every clock cycle. (See MPR
11/25/02-04, “New NEC Array Speeds Data.”)

So MathStar is addressing two general markets. For the
first market, MathStar offers reconfigurable logic instead of
standard parts or custom chips, especially for systems not
expected to reach high volumes. The second market consists
of customers that need massively parallel processing arrays to
run specialized tasks having a great deal of inherent instruc-
tion or data parallelism. The first market pits MathStar against
FPGA vendors; the second pits MathStar’s FPOA architecture
against a diverse group of other extreme architectures.

Competing against giants like Altera and Xilinx seems
quixotic, but MathStar argues that conventional FPGAs won’t
scale to higher clock frequencies and denser logic as well as
FPOAs will. It remains to be seen how well MathStar’s devices
scale, but the fundamental argument makes sense. As FPGAs
get faster and denser (thanks to advances in fabrication tech-
nology), developers will use them for more-complex applica-
tions. But complex algorithms force FPGAs to run at slower
speeds than their maximum clock frequency, unlike FPOAs.
In addition, complex gate-level development becomes more
difficult, and gate utilization often decreases. The general
trend in software development since the days of ENIAC has
been toward higher levels of abstraction above the metal, and
MathStar’s array of Silicon Objects is a level above the gate
arrays of conventional programmable-logic devices.

However, MathStar’s object array requires developers
to work at a lower level of abstraction than programmers
using languages like C and C++, at least with MathStar’s

existing tools. Of course, other massively parallel architec-
tures present the same challenge. To the extent that com-
petitors can make their exotic architectures more easily pro-
grammable, MathStar will be at a disadvantage. MPR has
covered many extreme architectures over the years, and
their biggest burdens are always programmability and the
steep learning curve of something new.

With a dozen design wins under its belt, MathStar obvi-
ously has some momentum. To win more converts, MathStar
needs to release detailed case studies of those designs, keep
improving its development tools, and establish a track record
of shipping enhanced devices that prove FPOAs are indeed
more scalable than FPGAs.

©  I N - S T A T J U L Y  2 4 , 2 0 0 6 M I C R O P R O C E S S O R  R E P O R T

MathStar Challenges FPGAs

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

P r i c e  &  Av a i l a b i l i t y

MathStar’s first field-programmable object array (FPOA)
intended for commercial production, the MOA1400D,
has been sampling since August 2005. Volume produc-
tion is scheduled for this October. Initial devices will be
available at speeds of 400MHz, 800MHz, and 1.0GHz.
The fastest part will cost $285 in 1,000-unit quantities;
MathStar hasn’t announced prices for the slower parts.
MathStar has disclosed that the next-generation device
will have the same-size array as the MOA1400D but
better I/O and other features; a detailed announcement
will probably come later this year. For more information
about MathStar, visit www.mathstar.com.


