
© I N - S T A T O C T O B E R 2 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

with multiple cores. With such abundance, it might seem
daffy to use highly specialized 3D-graphics coprocessors for
general-purpose number crunching.

But the computational allure of GPUs is proving irre-
sistible to the scientific community, chemical engineers,
defense contractors, Wall Street financiers, and other heavy-
duty math junkies. For their data-intensive applications,
they never seem to get enough processing power, even from
the most muscular general-purpose processors. They are
gazing hungrily at the graphics processors on PC graphics
cards and in the latest videogame consoles. Today’s best
GPUs can execute an astonishing 360 billion floating-point
operations per second (gigaflops)—more than seven times
the performance of the fastest x86 dual-core processor. Yet
their typical application is to repeatedly draw and obliterate
imaginary enemies for the amusement of people who can
find nothing better to do than play a videogame.

What a waste. Not of synapses—of silicon! Surely we
can find something more productive for those GPUs to do.

So says PeakStream, a Silicon Valley startup that was
founded in February 2005 and emerged from stealth mode
on September 18, 2006. PeakStream’s founders hail from
Network Appliance, Nvidia, Stanford University, Sun
Microsystems, and VMware. They were inspired by Stan-
ford’s Brook Project on stream programming, and they have
raised $17 million from Kleiner Perkins Caufield & Byers,
Sequoia Capital, and Foundation Capital. PeakStream’s
mission is to provide low-level software and development

tools that make GPUs relatively easy to program for general-
purpose number crunching.

It’s not a simple mission, because GPUs are notoriously
difficult to program. They are highly parallel multipipelined
processors with limited instruction sets. Obviously, they are
optimized for the relatively narrow demands of 3D graphics.
Game programmers are accustomed to bizarre architectures
and have the advantage of using high-level application pro-
gramming interfaces (API) like OpenGL and Microsoft’s
DirectX. But those APIs are unsuitable for programmers writ-
ing number-crunching software for scientific and technical
applications. The only alternative may be assembly language.

To preserve the sanity of mere mortals, PeakStream
has developed a software package called the PeakStream
Platform. Its main feature is an API with 80 function calls
for common mathematical operations. Programmers can
call these functions from high-level C++ code written with
industry-standard development tools. Special array struc-
tures automatically configure large data sets for parallel
processing on the GPU.

For now, PeakStream supports only the ATI Radeon
R580 graphics processor. It’s the same GPU found on ATI’s
Radeon X1900-series graphics cards for the PC market,
although PeakStream is using a specialized card. PeakStream
hopes to port the API to other GPUs and to IBM’s Cell
Broadband Engine in the near future. The company says its
programmers need only about three months to port the
platform to a new processor.

NUMBER CRUNCHING WITH GPUS
PeakStream’s Math API Exploits Parallelism in Graphics Processors

By Tom R. Halfhi l l {10/2/06-01}

There are dozens, if not hundreds, of microprocessor architectures in the world. And

Microprocessor Report covers new ones every year. They span the gamut from CISC to RISC

to VLIW, from tiny four-bit microcontrollers to mighty 64-bit supercomputer processors

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

Virtual Machine Enables Code Portability
The advantages of an off-the-shelf API will be apparent to
anyone even vaguely familiar with the complex architectures
of modern GPUs. Instead of learning a strange architecture
and laboriously scribing their code in assembly language,
programmers can write in a familiar high-level language aug-
mented with useful function calls. Not only will their code be
easier to write, but it will also be more portable. The archi-
tectures and programming models of GPUs can change sig-
nificantly from one generation to another, and GPUs from
different vendors have almost nothing in common. By using
the PeakStream Platform, programmers can run their binary
code on a new GPU, or even a completely different GPU,
without recompiling.

PeakStream hasn’t resorted to any kernel-level hacks to
enable this portability. As Figure 1 shows, the PeakStream Plat-
form includes a virtual machine that runs as a user-level task,
cleanly isolating the application code from the gory details of
the processor. Even the PeakStream math libraries behind the
API function calls run on the virtual machine, thanks to a just-
in-time (JIT) compiler. In many respects, the PeakStream Plat-
form is like a Java run-time environment. The key differences
are that programmers write source code in C++ instead of
Java, and the source code compiles to native x86 binary code,
not to Java bytecode or any other intermediate code.

Application programmers can use industry-standard
C/C++ development tools, such as Microsoft’s Visual Studio,
the Intel Compiler, or GNU C (GCC). PeakStream supple-
ments those tools with a plug-in debugger and a performance

profiler. Programmers write their C++ code using Peak-
Stream’s function calls and special array structures (more on
this later). The compiled binary is native x86 code that runs on
any x86-based computer. (The first version of the PeakStream
Platform is for Linux servers, but PeakStream plans to release
future versions for Microsoft Windows.)

In effect, the x86 binary code is merely control code. At
run time, PeakStream’s virtual machine intercepts the special
function calls embedded in the x86 binary. The JIT compiler
converts those routines into the GPU’s native machine lan-
guage, and it caches frequently used code in main memory
for later use. The virtual machine also determines how to
extract data parallelism from the application code, depend-
ing on the type of GPU in the host system. Because those
decisions happen at run time, the application code isn’t
bound to any particular GPU implementation or architec-
ture. It’s inherently portable.

PeakStream says it doesn’t necessarily require technical
assistance from GPU vendors to implement any of this low-
level software, because publicly available documentation con-
tains all the pertinent information. However, PeakStream has
established a development and joint-marketing relationship
with ATI, which, for now, makes the only GPU that is sup-
ported. Nvidia says it will provide technical support when
PeakStream ports the platform to an Nvidia GPU.

PeakStream Platform Has a Few Shortcomings
The ATI Radeon R580 that PeakStream supports will execute
360 gigaflops in single precision at 650MHz. That’s nearly the
highest performance available today in a GPU, which is the
reason PeakStream chose the R580 as its first target. The max-
imum theoretical throughput of the fastest x86 dual-core
processor (Intel’s 3.0GHz Core 2 Duo) is 48 single-precision
gigaflops—less than 14% the performance of the Radeon
R580. No wonder the most avid number crunchers find
GPUs an attractive alternative. However, the PeakStream
Platform does have shortcomings.

PeakStream’s virtual-machine approach is wonderful
for code portability, but one drawback is that a virtual
machine and a JIT compiler usually don’t deliver the same
high performance as statically compiled code running
natively on the target processor. Although C++ code written
for the PeakStream Platform compiles to a native x86
binary, the virtual machine and JIT compiler don’t translate
the PeakStream library functions into native code for the
GPU until run time.

PeakStream doesn’t view this limitation as significant.
Thanks largely to the popularity of Java, virtual-machine
technology and JIT compilers have made tremendous
progress in the past ten years. In some cases, programs com-
piled at run time can exceed the performance of statically
compiled programs, especially if they use run-time metrics to
optimize the compilation. PeakStream’s JIT compiler cur-
rently doesn’t use run-time profiling for that purpose, but it’s
a feature on the company’s to-do list. What’s more important

© I N - S T A T O C T O B E R 2 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Number Crunching With GPUs

Figure 1. The PeakStream Platform includes a special virtual machine
and a just-in-time (JIT) compiler. Programmers write application code
in C++ and compile to a standard x86 binary, which embeds the func-
tion calls to PeakStream’s math libraries. At run time, the JIT compiler
converts the function calls into the target processor’s machine lan-
guage. This arrangement preserves code portability across different
GPU architectures, allows the virtual machine to exploit the GPU’s
inherent parallelism, and relieves the application programmer of memory-
management chores.

PeakStream
Virtual

Machine
API

JIT
Scheduler

Memory
Manager

JIT
Compiler

Executor

PeakStream
Profiler &
Debugger

GPU
Compiler

Application Binary
(Compiled x86 Code with

PeakStream Function Calls)

Instrument
& Analyze

Math
Libs

3

is that JIT compilation allows the PeakStream virtual
machine to optimize data parallelism at run time, according
to the specific microarchitecture of the GPU.

A more significant limitation of the PeakStream Platform
is that it’s currently much more suitable for single-precision
(32-bit) floating-point
operations than for double-
precision (64-bit) operations.
PeakStream’s API supports
double precision as easily as
single precision, but double-
precision function calls cur-
rently execute on the system’s
host processor (the x86 CPU),
not on the GPU. Result: even
on a 3.0GHz Intel Core 2
Duo, maximum theoretical
throughput plunges 94%, to
24 gigaflops. This limitation
will disappoint scientists,
mathematicians, and others
who need double precision.
PeakStream estimates that
about half the mathemati-
cal applications in high-
performance computing re-
quire double precision.

Don’t blame Peak-
Stream for this disadvan-
tage. Today’s GPUs and
game-oriented CPUs are
highly optimized for single-
precision math, because it’s
sufficient for calculating the
vertices of 3D-graphics
polygons in videogames. For
example, in single precision,
IBM’s smoothly pipelined
Cell BE can execute 256
gigaflops at the chip’s nomi-
nal clock frequency of
3.2GHz. In double preci-
sion, that rate falls to 25
gigaflops—nothing to be
ashamed of, certainly, but
nowhere near the breakneck
single-precision pace. (See
MPR 3/13/06-01, “The Cell,
at One.”)

PeakStream expects
GPUs will advance to dou-
ble precision by 2008 to
provide better realism and
more-detailed 3D graphics.
Already, digital-movie houses

like Pixar Animation Studios render all their graphics in
double precision, distributing the heavy workload across
vast render farms of networked computers. PeakStream fig-
ures it’s only a matter of time before gamers and others
demand the same quality in real-time graphics on PCs and

© I N - S T A T O C T O B E R 2 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Number Crunching With GPUs

Basic Operators and Functions Reduction Functions
+, –, *, / (add, sub, mul, div) B = all(A, [dim])

% (modulus) B = any(A, [dim])
&&, ||, ! (logical AND, OR, NOT) B = max_value(A, [dim])
<, <=, ==, >, >= (comparisons) B = mean(A, [dim])

gather1_floor (create & reorder array) B = min_value(A, [dim])
gather2_floor (create & reorder array) B = product(A, [dim])

Array-Generation Functions B = stddev(A, [dim])
A = identity_fNN(size) B = sum(A, [dim])

A = index_fNN(dim, size0, [size1=1]) B = variance(A, [dim])
A = ones_fNN(size0, [size1=1]) Miscellaneous Functions
A = zeros_fNN(size0, [size1=1]) B = abs(A)

Attribute-Query Functions C = fmod(A,B)
size = A.get_cols() C = fmod_inplace(A, B)
dim = A.get_dims() B = cdf_normal(A, MU, SIGMA)
size = A.get_rows() B = is_nan(A)

size = A.get_size([dim]) C = max(A,B)
bool = A.is_same_shape(B) C = min(A,B)

bool = A.is_scalar() B = sign(A)
Elementwise Functions Linear Algebra

B = ceil(A) B = dot_product(A, B, [dim])
B = floor(A) B = matmul(A, B)
B = round(A) B = transpose(A)
B = trunc(A) B = lu_condition(LU, NORMOFA)
B = exp(A) lu_decomp(A, LU, PIVOT, SINGULARITY)
B = log(A) C = lu_solve(LU, PIVOT, B)

B = log10(A) Basic Linear Algebra Subprograms
B = log2(A) cblas_daxpy(n,ALPHA,X,incX,Y,incY)

C = pow(A,B) cblas_saxpy(n,ALPHA,X,incX,Y,incY)
B = pow10(A) cblas_dcopy(n,X,incX,Y,incY)
B = pow2(A) cblas_scopy(n,X,incX,Y,incY)
B = sqrt(A) A = cblas_ddot(n,X,incX,Y,incY)

Trigonometric Functions A = cblas_sdot(n,X,incX,Y,incY)
B = acos(A) cblas_dgemm(order,transA,transB, m,n,k,ALPHA,A,lda,B,ldb,BETA,C,ldc)
B = acsc(A) cblas_sgemm(order,transA,transB, m,n,k,ALPHA,A,lda,B,ldb,BETA,C,ldc)
B = asec(A) cblas_dgemv(order,transA,m,n, ALPHA,A,lda,X,incX,BETA,Y,incY)
B = asin(A) cblas_sgemv(order,transA,m,n, ALPHA,A,lda,X,incX,BETA,Y,incY)
B = atan(A) cblas_dger(order,m,n,ALPHA,X,incX,Y,incY,A,lda)

C = atan2(A,B) cblas_sger(order,m,n,ALPHA,X,incX,Y,incY,A,lda)
B = cos(A) cblas_dnrm2(n,X,incX)
B = cosh(A) cblas_snrm2(n,X,incX)
B = cot(A) cblas_dscal(n,ALPHA,X,incX)
B = coth(A) cblas_sscal(n,ALPHA,X,incX)
B = csc(A) cblas_dswap(n,X,incX,Y,incY)
B = csch(A) cblas_sswap(n,X,incX,Y,incY)
B = sec(A)
B = sech(A)
B = sin(A)
B = sinh(A)
B = tan(A)
B = tanh(A)

PeakStream API Function Calls

Table 1. PeakStream’s API makes all these function calls available to programmers in C++ by including the
header file peakstream.h in the application source code. Common arithmetic operators also work with the spe-
cial array structures. Application code written in C++ using these functions will run on different generations of
a GPU architecture and even on different architectures—if PeakStream supports them. Currently, PeakStream
supports only the ATI Radeon R580.

4

game consoles. GPUs would require relatively little extra
hardware to support double precision if they run 64-bit
operations at half the speed of 32-bit operations.

Record-breaking double-precision performance re-
quires significantly more hardware. For the world’s fastest
supercomputer—the Lawrence-Livermore BlueGene/L—
IBM created a “double hummer” FPU. In essence, IBM cloned
the entire 64-bit pipeline and register file of a single-pipelined
64-bit FPU. This remarkable processor crunches through
double-precision math as quickly as it handles single-precision.
Fully configured with 131,072 processors, BlueGene/L’s peak
performance is 367 trillion floating-point operations per
second (teraflops). That’s three orders of magnitude faster
than a Radeon R580—albeit with five orders of magnitude
more processors. (See MPR 10/11/04-01, “IBM Makes
Designer Genes.”)

API Supports Common Math Functions
Table 1 lists all the function calls in PeakStream’s API. These
calls are available to programmers after including a header
file called peakstream.h in the include section of a C++ pro-
gram. Note several functions for creating and manipulating
special arrays. These arrays are the key structures in Peak-
Stream’s data parallelism. In addition to these functions, the
API supports familiar symbolic operators for manipulating
arrays, such as = for assignments, == for equality compar-
isons, && for logical AND, ! for unary operations, and the

usual arithmetic operators. Most function calls have mean-
ingful names and are largely self-explanatory.

Figure 2 shows two examples of C++ source code.
Example A is typical sequential code for approximating the
value of pi. Example B has been refactored after including
the peakstream.h library. It uses PeakStream’s special arrays
to exploit the parallel-processing capabilities of a multi-
pipelined GPU. PeakStream provides a profiling tool that
helps application programmers find such opportunities for
data parallelism in their code.

For now, the PeakStream Platform uses only the pixel-
shader pipelines and caches of the GPU. The GPU’s vertex
shaders, texture-processing filters, video decoders, and other
hardware lie fallow. It seems like a waste of processing
resources, but PeakStream has good reasons for this decision.

First, the pixel shaders are the most computationally
powerful parts of the Radeon R580 and occupy most of the
chip’s logic. It would take much more work for PeakStream
to parcel out the number crunching to other parts of the
GPU. Second, that work would probably become redun-
dant. ATI’s next-generation GPUs will have a unified shader
architecture that devotes one set of resources to pixel, ver-
tex, and geometry shading. Unified shaders are a step
toward easier programmability, and a future version of
Microsoft’s DirectX graphics API (Direct X 10) is expected
to support this feature. Of course, ATI is taking this step
primarily for the benefit of graphics programmers, but it

© I N - S T A T O C T O B E R 2 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Number Crunching With GPUs

Figure 2. These two examples of C++ source code are routines for approximating the value of pi. Example A is typical sequential code without using
any special function libraries. Example B uses PeakStream’s math library (included as peakstream.h). Note the call to PeakStream’s fast random-
number generator and the operations on arrays of 32-bit floats. The program defines two arrays, each filled with one million random numbers. After
defining the arrays, the program multiplies and adds them together to create a third million-element array, then calls another PeakStream function to
find the square root. At run time, PeakStream’s virtual machine automatically determines how to execute this code for maximum data parallelism on
the target processor. To convert this code to double precision, the programmer would change the array definitions from “Arrayf32” to “Arrayf64”.

SAMPLE A: TRADITIONAL SERIAL CODE

include <stdio.h>
include <stdlib.h>
include <math.h>

int main (int argc, const char** argv){
 long int i;
 float x, y;
 float num_inside, distance_from_zero;
 float Pi;

 num_inside = 0.0f;
 for(i = 0; i < 1000000; i++) {
 x = float(rand()) / float(RAND_MAX + 1);
 y = float(rand()) / float(RAND_MAX + 1);
 distance_from_zero = sqrt(x*x + y*y);
 if (distance_from_zero <= 1.0f)
 num_inside += 1.0f;
 }
 Pi = 4.0f * (num_inside / NSET);

 printf("Value of Pi = %f \n",Pi);
}

**SAMPLE B: PEAKSTREAM PLATFORM CODE **

include <stdio.h>
include <stdlib.h>
include <math.h>
include <peakstream.h>

using namespace SP;
using namespace SP::Generator;

int main (int argc, const char** argv){
 float Pi_cpu;
 init();
Arrayf32 Pi;
{
 DefaultGenerator32 G; // Random Number generator handle
 Arrayf32 X = G.make(10000000); // distributed in [0,1)
 Arrayf32 Y = G.make(10000000); // distributed in [0,1)
 Arrayf32 distance_from_zero = sqrt(X * X + Y * Y);
 Arrayf32 inside_circle = cond((distance_from_zero <= 1.0f), 1.0f,
0.0f);
 Pi = 4.0f*sum(inside_circle)/NSET;
 }
 Pi_cpu = Pi.read_scalar();

 printf("Value of Pi = %f \n",Pi_cpu);
shutdown();
}

5

will also allow programmers in other fields to utilize the
chip’s resources to their fullest.

More Applications Need High Performance
Applications that demand very high levels of processing power
fall into several categories. Life sciences are a rapidly growing
field, especially for molecular modeling, drug discovery,
genome mapping, and protein folding. Some life-science appli-
cations require double-precision math. Nevertheless, scientists
in this field are looking eagerly at single-precision GPUs.

One example is the Folding@Home Project, which runs
a distributed protein-folding program on more than a mil-
lion computers connected to the Internet. Folding@Home is
patterned after another massively parallel Internet collabora-
tion, SETI@Home (Search for Extraterrestrial Intelligence). A
related effort is the Cure@PS3 Project, which hopes to use
thousands of Cell BE processors in Sony PlayStation 3 game
consoles for medical research.

Oil and natural-gas exploration is another hot field,
and single-precision math is often good enough. An exam-
ple is Kirchhoff migration—a mathematical method of ana-
lyzing the echoes from test explosions to determine the
composition of subsurface geological layers or the contours
of a seafloor. Faster analysis allows geologists and engineers
to get results from their probes in real time. PeakStream says
a Kirchhoff-migration program written with its API can
analyze two billion samples per second, compared with only
60 million samples per second for the same program run-
ning on a regular CPU.

Wall Street financiers are demanding more compute
power, too. Faster processors allow them to perform more-
complex analyses of financial data and offer new investment
products. One example is a Monte Carlo simulation, so called
because it generates random numbers for interest rates, cur-
rency exchange rates, and other economic variables as part of
an elaborate simulation that estimates the future values of
fixed-income derivatives, such as exotic swaptions. Faster pro-
cessing might allow a stock brokerage to perform all the nec-
essary calculations overnight, after the stock market closes, so
brokers can sell the investments the next morning, when the
market opens. PeakStream says a Monte Carlo simulation
developed with its API can generate 700 million pseudoran-
dom numbers per second, about ten times the performance of
a 2.6GHz dual-core AMD Opteron.

The military has an insatiable appetite for perform-
ance, as well. PeakStream says a large government systems
integrator has used the API to write a signal-processing pro-
gram in only two weeks that previously took six months to
hand-code in assembly language. For this application, the
primary goal was to reduce the computer’s weight. Running
the PeakStream Platform on a GPU allowed the developers
to cram more processing power into a smaller package.
PeakStream cannot disclose the exact nature of the applica-
tion, but the customer is frequently associated with pilotless
drone aircraft.

Sharp Growth in High-Performance Computing
PeakStream is entering a relatively new but interesting
business. GPU vendors annually ship tens of millions of
chips on PC graphics cards and in game consoles, so the
high-performance computing market may seem puny in
comparison. Yet according to IDC, high-performance and
technical computing generated $9.2 billion in revenue in
2005, up 24% from 2004. It was the second consecutive year
of revenue growth exceeding 20%.

Meanwhile, the PC graphics market is changing in ways
that create uncertainty. AMD recently spent $5.4 billion to
acquire ATI, which significantly alters the competitive land-
scape. (See MPR 8/28/06-03, “AMD Writes a New Chapter for
PCs.”) Intel continues integrating better graphics into some
of its PC chip sets, which tends to shrink the audience for dis-
crete GPUs to performance-obsessed gamers. Both develop-
ments are forcing the largest surviving independent GPU
vendor, Nvidia, to reevaluate the graphics market and its
prospects for future growth.

At present, the PeakStream Platform exploits data par-
allelism on only a single GPU. Developers could tap much
greater parallelism if PeakStream supported operations on
multiple GPUs—whether those chips were clustered on a sin-
gle board, on multiple boards in a single system, or distrib-
uted across multiple systems. The Folding@Home,
Cure@PS3, and SETI@Home projects chart a fascinating
course for massively parallel “supercomputers” linking thou-
sands of ordinary PCs and game machines on the Internet.
Supporting multiple GPUs ganged together in parallel is an
ambition for PeakStream’s future development.

© I N - S T A T O C T O B E R 2 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Number Crunching With GPUs

P r i c e & Av a i l a b i l i t y

The PeakStream Platform is available now. The first ver-
sion, called PeakStream Server, is for an x86-based Linux
server with a single ATI Radeon R580 graphics processor.
Pricing starts at $2,000 per GPU for commercial users.
PeakStream offers volume discounts and academic dis-
counts. For more information about PeakStream, visit
www.peakstreaminc.com.
• For information about ATI’s Radeon R580 graphics

processor, see www.ati.com/products/radeonx1900/
specs.html

• For information about Stanford University’s Brook
Project, see http://graphics.stanford.edu/projects/
brookgpu/index.html.

• For information about the Folding@Home Project, see
http://folding.stanford.edu/.

• For information about the Cure@PS3 Project, see
http://folding.stanford.edu/FAQ-PS3.html

• For a list of the world’s fastest supercomputers, see
www.top500.org/list/2006/06/100.

6

One alternative to using GPUs for high-performance
computing is a new breed of floating-point coprocessor. Dis-
crete FPUs were common 20 years ago, when microprocessors
lacked integrated FPUs. Longtime MPR readers may recall
Weitek’s popular FPUs for x86 processors. Intel’s first x86
processor with an integrated FPU was the 486DX, introduced
in 1989; by the early 1990s, external FPUs had become redun-
dant. Recently, however, the concept has been revived, prima-
rily by ClearSpeed Technology, a British company. In 2003,
ClearSpeed introduced the CS301, a massively parallel
floating-point coprocessor capable of delivering 25.6
gigaflops at only 200MHz. (See MPR 1/12/04-02, “ClearSpeed
Hits Design Targets,” and MPR 11/17/03-01, “Floating Point
Buoys ClearSpeed.”) The CS301 was primarily a development
chip and was quickly superseded in 2004 by the CSX600. It
delivers 25 gigaflops and consumes only 10W.

Eight of ClearSpeed’s Advance accelerator boards
(each with two CSX600 chips) clustered in four Hewlett-
Packard Proliant DL380 G5 servers recently achieved 364.2
gigaflops while consuming only 200W additional power. This
modest installation is nearly as fast as the world’s best super-
computer in 1996. Although the HP cluster’s performance is

only slightly faster than the 360 gigaflops of a single Radeon
R580, the ClearSpeed FPUs execute double-precision
math—a make-or-break advantage for some applications.
ClearSpeed is also supplying 720 coprocessors to Sun
Microsystems for Japan’s largest supercomputer, now under
construction for the Tokyo Institute of Technology. Clear-
Speed’s coprocessors will assist more than 10,000 AMD
Opteron processor cores. Performance is expected to reach
85 teraflops.

Despite this competition, GPUs show great promise.
They evolve faster than more-specialized processors because
the high-volume game market fuels their development. MPR
expects that GPU vendors will recognize enough potential in
high-performance computing to begin tweaking their future
designs in small ways that encourage it. The consumer mar-
ket is still the main driver, of course, but relatively minor
improvements in programmability would make a big differ-
ence to developers that have other applications in mind. A
few years from now, when double-precision math becomes a
consumer-market necessity, GPUs will overcome their worst
shortcoming and evolve into very competitive engines for
high-performance, low-cost computing.

© I N - S T A T O C T O B E R 2 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Number Crunching With GPUs

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

