
© I N - S T A T A P R I L 3 0 , 2 0 0 7 M I C R O P R O C E S S O R R E P O R T

THE DREAD OF THREADS
By Tom R. Halfhi l l {4/30/07-02}

on my personal website. Since the mid-1990s, thousands of
people have used the applet without reporting the problem,
which escaped my attention despite yearly updates.

All programmers know this fear: the lurking bug that
evades testing, only to surface and bare its teeth much later. At
least I’m in good company. Around the same time I found and
squashed my little bug, a much worse programming error dis-
abled an entire flight of brand-new F-22 Raptors of the U.S.
Air Force. On the way to Japan for their first overseas deploy-
ment, the $120 million jet fighters suffered major failures of
their navigation and communications systems after crossing
the international date line. When the high-tech avionics
refused to reboot, the crippled planes had to follow their air
tankers back to Hawaii, humbly observing visual flight rules
the whole way. Later, engineers determined that the F-22’s
software couldn’t handle the sudden change in compass head-
ing from 180 degrees west to 180 degrees east. Whoops!

Any programmer can tell similar tales. Bugs happen.
However, the trend toward multicore processors is leading
the computer industry into uncharted territory. There might
be entire minefields of hidden bugs we haven’t considered
before. Two papers I’ve read on this subject are disturbing,
especially because they warn that we have few alternatives.

Hidden Holes in Threadbare Software
One paper is “The Problem With Threads,” by Dr. Edward A.
Lee, chairman of electrical engineering at the University of
California at Berkeley. (For a web link, see our “For More

Information” box.) Published last year, this detailed paper
examines new problems that can appear when multithreaded
programs run on systems with multiple processors or multi-
core processors. Programs thought to be rock-solid after rig-
orous testing and everyday use can suddenly fail. They behave
just fine on single-processor or single-core systems, but suf-
fer mysterious thread-contention deadlocks (sometimes
called “threadlocks”) when running on systems with multiple
processors or cores. These failures can happen even if the
programmers tested and debugged the software with thread-
analysis tools.

Lee cites the example of the Ptolemy Project at UC-
Berkeley. In early 2000, a team of programmers began writing
the kernel of an interactive concurrency modeling environ-
ment. The team thoroughly tested and debugged this multi-
threaded Java program, using multiple levels of design reviews,
code reviews, daily rebuilds, and 100%-coverage regression tests.
The finished program ran great for four years. Until one day,
when running on a dual-processor system, it deadlocked.

Lee concludes:“It is certainly true that our relatively rig-
orous software-engineering practice identified and fixed
many concurrency bugs. But the fact that a problem as seri-
ous as a deadlock that locked up the system could go unde-
tected for four years despite this practice is alarming. How
many more such problems remain? How long do we need test
before we can be sure to have discovered all such problems?
Regrettably, I have to conclude that testing may never reveal
all the problems in nontrivial multithreaded code.”

Recently I discovered a bug in a Java applet I wrote more than 10 years ago. Luckily, the bug

was cosmetic and didn’t affect the applet’s calculations. But I was taken aback that an

embarrassing error could lurk for so long in a program that’s the most popular attraction

T H E E D I T O R I A L V I E W

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2 The Dread of Threads

© I N - S T A T A P R I L 3 0 , 2 0 0 7 M I C R O P R O C E S S O R R E P O R T

That’s a frightening conclusion, especially coming from
a respected professor at a leading engineering school. Lee’s
paper goes on to discuss the shortcomings of today’s pro-
gramming languages and software-development tools and
suggests some solutions. Nevertheless, his experience with
the Ptolemy II kernel and his other research is disquieting.
What does it foretell for millions of ordinary PCs and
servers? Dual-core processors are now widespread, even in
low-end systems, and quad-core chips are rapidly penetrat-
ing the market. Some of these multicore processors com-
pound the potential problem by using hardware multi-
threading, too.

One hope is that concurrency bugs are less likely to
survive for years in code written for PCs, which must
endure the teeming hothouse environment of the world at
large. Software companies commonly release new PC oper-
ating systems and application programs for public beta test-
ing. With millions of people hammering on the code, surely
the bugs will surface sooner rather than later, right? Maybe
not. Identifying bugs is difficult, even with the automatic
bug-reporting features built into Windows and other soft-
ware. Failures may be caused by interactions among two or
more multithreaded programs—a situation difficult to
reproduce in the lab.

Are embedded systems in greater danger? Most aren’t as
easily patched as PCs. They often lack network connectivity
or any other means of receiving bug fixes, and their firmware
may be locked in ROM. Such is the case with millions of
DVD players, VCRs, and other products whose real-time
clocks are no longer in sync with the daylight-savings time
changes in the U.S. (That problem was caused by Congress,
not by multithreading, but it illustrates the difficulty of
patching embedded systems in the field.) On the other hand,
embedded developers were designing multicore processors
and multiprocessor systems for years before PCs joined the
bandwagon. Perhaps greater experience will afford some pro-
tection.

No Alternatives on the Horizon
In any case, there are no ready alternatives to parallel pro-
cessing, according to another UC-Berkeley paper written by
11 experts on microprocessor architecture. (For a web link,
see the “For More Information” box.) In “The Landscape of
Parallel Computing Research: A View From Berkeley,” they
write that the only path toward significantly faster CPUs is
chip multiprocessing. The hardships of controlling power
consumption and heat dissipation rule out all other approaches
for the foreseeable future. Programmers will simply have to
adapt by writing concurrent code, regardless of any conse-
quential problems with threads.

HPCwire, a publication for the high-performance com-
puting community, interviewed two of the Berkeley paper’s
coauthors: David Patterson, of Computer Architecture: A
Quantitative Approach fame, and John Shalf, a computer sci-
entist at the National Energy Research Scientific Computing

Center. It’s a fascinating interview. (See the web link in our
“For More Information” box.)

Patterson says programmers are only beginning to
grasp that they must rewrite much of their code to get any
benefit from the rising number of processor cores per chip.
“The industry is already betting on multicore for future
improvements in computing performance,” Patterson told
HPCwire. “To use a football analogy, the computing indus-
try has already thrown a Hail Mary pass with the first round
of multicore designs. The ball is in the air, but nobody is
running yet [to catch it]. That’s where things stand today.”

The “View From Berkeley” paper distinguishes
between today’s modest dual- or quad-multicore chips and
future “manycore” designs, which will be far more aggressive.
They will integrate dozens, hundreds, or even thousands, of
cores. Indeed, Microprocessor Report has been writing about
such designs for years. They appeared first in the embedded
market, where specialized workloads encourage the develop-
ment of specialized processors. In recent years, MPR has
described massively parallel or manycore designs from
Ambric, ClearSpeed, Connex Technology, Elixent, Eutecus,
Intel, MathStar, PicoChip, and Xelerated. Some devices from
these companies cram more than 4,000 processor cores on a
single chip. In addition, other companies have developed
their own manycore ASICs and SoCs for internal use. A
prominent example is Cisco Systems’ Silicon Packet Proces-
sor, which integrates 188 Tensilica Xtensa processor cores.

Naturally, specialized workloads, such as packet rout-
ing, digital-video encoding, and scientific computing, lend
themselves to parallel processing. In the terminology of the
computer science community, such applications are
“embarrassingly parallel.” Patterson says there’s no need to
apologize for parallelism. He suggests describing such appli-
cations as “successfully parallel” or “brilliantly parallel.”

Yet Another New Language?
Putting terminology aside, the greater challenge is finding
parallelism in commonplace software—the Holy Grail of
computer science for decades. Patterson worries that some
software developers are giving up without trying, making the
excuse that they don’t need parallelism. “We get questions
along the lines of, ‘What could you possibly run that needs
128 cores on a laptop?,’” Patterson told HPCwire. “This
reminds me of the story of the patent examiner in 1870 who
decided that everything of importance had been invented, so
he quit his job to look for something permanent. Or that
640KB ought to be enough memory for PCs. We think the
most exciting software has yet to be written, and it’s going to
be highly parallel.”

If programmers cannot find any parallelism in a par-
ticular program, then that program (and others like it) will
soon reach a performance plateau. Sure, they will run a little
faster, as long as clock speeds keep inching upward. But the
big performance gains taken for granted in past years are his-
tory. Only by exploiting parallelism—on a scale as massive as

3The Dread of Threads

© I N - S T A T A P R I L 3 0 , 2 0 0 7 M I C R O P R O C E S S O R R E P O R T

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MDRonline.com

the manycore designs themselves—can software continue
delivering significantly higher performance.

As this reality sinks in, the software community has lit-
tle choice. The industry must create new development tools
and perhaps new programming languages as well. Of course,
there are already several concurrent programming languages,
and more are coming. But, to date, there’s no widely accepted
standard in the same way that ANSI C, C++, or Java is con-
sidered standard for writing sequential code or moderately
parallel code. All the manycore-processor companies we
mentioned have their own proprietary software tools, often
with specially modified versions of sequential languages. The
Defense Advanced Research Projects Agency (DARPA) is
funding projects at Cray, Sun Microsystems, and other com-
panies that could lead to a new concurrent language. IBM,
Intel, and Microsoft are working in the same direction, as are
numerous smaller companies and startups.

Perhaps, in time, we’ll see an industry-standard pro-
gramming language that makes it easier to express massive
parallelism while avoiding nasty threadlocks. To become a
true standard, such a language must work on manycore
processors from numerous vendors. Because different many-
core processors have radically different architectures, the
language will almost certainly need a Java-like abstraction

layer that insulates programmers from details of the hardware.
If the Berkeley experts are right, this approach may be the only
solution to problems with threads and parallelism.

F o r M o r e I n f o r m a t i o n
“The Problem With Threads”:
• www.eecs.berkeley.edu/Pubs/TechRpts/2006/

EECS-2006-1.pdf

“The Landscape of Parallel Computing Research: A
View From Berkeley”:
• www.eecs.berkeley.edu/Pubs/TechRpts/2006/

EECS-2006-183.pdf

“Confronting Parallelism: The View From Berkeley”
(HPCwire):
• www.hpcwire.com/hpc/1288079.html

