
© I N - S T A T D E C E M B E R 3 1 , 2 0 0 7 M I C R O P R O C E S S O R R E P O R T

Leaving Programmers In Their Dust,” by John Markoff.) But
the discussion is equally spirited on the hardware side.

One debate is about symmetric versus asymmetric
multiprocessing. Should all the cores on a multicore chip be
identical, or should some be specialized for different tasks?
Another debate questions the value of core-level multi-
threading. How many threads make sense? In many ways,
these debates echo the classic RISC versus CISC arguments
of the 1990s—simplicity versus complexity, efficiency versus
expediency.

Let’s review the symmetric-asymmetric debate first.
With quad-core processors now penetrating the PC market,
it’s not hard to envision PC processors with 8, 12, 16, or more
cores in the near future. (Some embedded processors passed
those milestones years ago.) Already, the term “manycore”
has been coined to describe chips that rise above the mere
multicore category. The boundary between multicore and
manycore isn’t well defined, but in most discussions we’ve
heard and read,“manycore” seems to describe chips with tens
of cores. Beyond manycore, the next category is “massively
parallel,” which seems to describe chips with at least 64 cores.
Naturally, these definitions are approximations.

Some CPU architects believe that as the number of
processor cores increases, symmetry is the practical
approach to large-scale designs. It’s easier to slap down mul-
tiple copies of the same basic core than to create several dif-
ferent cores, even if specialized cores are better suited for

their tasks. This argument foresees processor cores becom-
ing general-purpose processing elements in the same way
that ALUs or even NAND gates are today. Many superscalar
processors use multiple copies of the same ALU, even when
different ALUs might be more efficient. Logic-synthesis
compilers often generate NAND gates in circuits where sim-
pler gates might suffice. The general principle is that finish-
ing an adequate design more quickly is better than crafting a
highly optimized design more slowly. (Software engineers
settled their version of this debate a long time ago, when
they traded their assemblers for compilers.)

Symmetric-multiprocessor advocates have many facts
on their side. They can cite time-to-market pressures, rising
nonrecurring engineering (NRE) costs, and the ever-present
desire to simplify an already complex design project. In addi-
tion, a symmetric multiprocessor is usually easier to program
than an asymmetric multiprocessor, because all the cores are
identical. And the advantages may extend beyond the proces-
sor cores themselves. For instance, if all the cores are sym-
metrical, their on-chip interconnects can be more uniform.

In contrast, an asymmetric multiprocessor may require
more design effort, on-chip interconnects that are more
complex, different software-development tools for the dif-
ferent cores, and perhaps even different teams of program-
mers with different skills. So, for numerous reasons, the
cookie-cutter approach to multicore design is certainly
attractive.

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

T H E E D I T O R I A L V I E W

THE FUTURE OF
MULTICORE PROCESSORS
By Tom R. Halfhi l l {12/31/07-02}

With the multicore era undeniably upon us, more talk is turning to the future implications of

multicore processors. Of course, software development remains a big challenge, even provok-

ing a recent article in The New York Times, of all places. (See NYT 12/17/07, “Faster Chips Are

2

© I N - S T A T D E C E M B E R 3 1 , 2 0 0 7 M I C R O P R O C E S S O R R E P O R T

Editorial: The Future of Multicore Processors

Make the Cores Fit the Chores
On the other hand, why settle for mediocrity? An asymmetric
multicore processor can deliver superior throughput while
conserving silicon and power. For example, network connec-
tivity is almost universal in computing devices of all kinds,
from desktop PCs to mobile phones. Why assign a suboptimal
general-purpose core to packet processing when an optimized
core can do the job better?

Some other specialized but commonplace tasks that
come to mind are cryptography, digital-rights management,
data compression/decompression, audio processing, video
processing, media transcoding, and scanning a bitstream for
telltale signs of malware (basically, a pattern-matching task).
Sure, general-purpose cores can do all these things, but spe-
cialized cores can do them much faster, with fewer transis-
tors, while burning less power.

Berkeley Design Technology’s Jeff Bier made a similar
observation in a recent edition of his online newsletter,
Impulse Response. Bier notes that the architectures of CPUs
and DSPs have been converging for several years, as general-
purpose CPUs have added DSP extensions and DSPs have
added general-purpose extensions. But in the multicore era,
Bier foresees a divergence. CPU and DSP cores may revert to
their original differentiation, because an asymmetric multi-
core chip can integrate both types of cores. No longer must
one core do it all.

There is plenty of historical precedence for task spe-
cialization in microprocessors, even in “general-purpose”
microprocessors. For instance, although an ALU can execute
floating-point operations entirely in software, a hardware
FPU is much faster. More to the point, many network proces-
sors have specialized engines for networking tasks in addition
to their general-purpose cores. The highly integrated proces-
sors from Cavium Networks and Freescale Semiconductor are
good examples. (See MPR 8/27/07-01, “Freescale’s Multicore
Strategy,” and MPR 7/16/07-01, “Cavium Stalks Storage.”)

Another factor in favor of asymmetric multiproces-
sing is that the processor cores in multicore chips tend to be
simpler than those in single-core chips, so differentiation is
easier to achieve. This is particularly true of manycore and
massively parallel designs. Indeed, some massively parallel
chips we’ve covered in are built with dozens or hundreds of
very simple four-bit, eight-bit, or 16-bit cores. Designing a
small, specialized core is much easier than designing a large,
complex, general-purpose core that must be a jack of all
trades.

Different Cores, Common Architecture
Tensilica CEO Chris Rowen makes another argument in favor
of asymmetric multiprocessing: small special-purpose cores
are even easier to create when engineers use highly automated
design tools. Of course, Rowen’s company happens to make
such tools, but his argument is sound nevertheless.

Tensilica’s Xtensa configurable processors let develop-
ers customize and extend the instruction-set architecture for

application-specific tasks, greatly improving performance.
Better yet, Tensilica’s XPRES (Xtensa PRocessor Extension
Synthesis) tool automatically generates custom instructions
by analyzing ordinary C/C++ code. (See MPR 7/12/04-01,
“Tensilica’s Automaton Arrives.”)

Rowen predicts that future multicore chips will integrate
numerous specialized engines for data-plane processing.
These engines will supplement, not replace, the general-
purpose cores dedicated to control-plane processing. Although
the data engines will be programmable—and therefore adapt-
able to changing conditions—their optimized microarchitec-
tures will deliver performance on a par with hard-wired logic.
To make these asymmetric multicore chips easily programma-
ble, Rowen says, the various cores should share a common
CPU architecture. This commonality will allow programmers
to use the same software-development tools for all the cores.

Rowen’s vision is compelling. Yes, it meshes with Ten-
silica’s marketing, but asymmetric multiprocessing can work
just as well with the x86 or any other CPU architecture. We
won’t be surprised if Intel’s upcoming low-power x86 core
(Silverthorne) someday appears on the same die with Intel’s
larger Core 2 microarchitecture. Looking further ahead, we
can imagine a day when all chip designers use highly auto-
mated tools like Tensilica’s to rapidly generate specialized
microarchitectures based on a common architecture.

However, we can also imagine a day when most chip
designers care no more for optimizing processor cores than
most software programmers care for optimizing subroutines
in assembly language. If replicating the same general-purpose
core delivers adequate performance and finishes the project
faster, then the greater expediency of symmetry may trump
the greater efficiency of asymmetry. Remember, everyone
pretty much agreed that RISC was more efficient than CISC,
but CISC still thrives, partly because using an established
software base is expedient.

A lot will depend on the evolution of processor-design
tools. Rowen doesn’t like my assembly-language analogy,
because he believes that designing a specialized processor core
with automated tools will be even easier than writing high-
level software code. In some cases, Tensilica’s XPRES tool
already achieves this goal. It can automatically convert C/C++
application code into custom instructions for Tensilica’s
Xtensa processors, using Tensilica Instruction Extension
(TIE) language. However, XPRES is a unique tool that works
only with Xtensa configurable processors. A one-company,
one-architecture solution from a company as small as Ten-
silica won’t change the direction of the whole industry. Sim-
ilar technology must become available for every CPU archi-
tecture. Design tools are moving in the same general
direction as Tensilica’s tools, but the progress is slow.

The Rise of Core-Level Multithreading
A similar debate rages about single threading versus multi-
threading at the hardware level. Single-threaded processor
cores are simpler, smaller, and easier to replicate on chip, but

3

© I N - S T A T D E C E M B E R 3 1 , 2 0 0 7 M I C R O P R O C E S S O R R E P O R T

Editorial: The Future of Multicore Processors

multithreaded cores are superior for some applications.
Adding multithreading to a core usually requires much less
logic than replicating an entire core. The processor needs
duplicate registers for each additional thread, plus control
logic to select the appropriate register set.

Hardware multithreading was pioneered by companies
as disparate as DEC (in Alpha server processors) and Ubicom (in
embedded packet processors). (See MPR 12/6/99-01, “Compaq
Chooses SMT for Alpha,”and MPR 4/21/03-01,“Ubicom’s New
NPU Stays Small.”) Intel has flirted with the same technology
on a smaller scale under the brand name Hyper-Threading.
(See MPR 12/2/02-01, “Intel’s Hyper-Threading Takes Off,”
and MPR 9/17/01-01, “Intel Embraces Multithreading.”)

Today, the leading flag-bearer for hardware multithread-
ing is Sun Microsystems. Sun’s UltraSPARC-T2 (Niagara 2)
server processor has eight processor cores, each with eight-
way multithreading, for a total of 64 simultaneous threads.
Using virtualization, an UltraSPARC-T2 can run 64 different
instances of an operating system at the same time. (At last, a
processor that can simultaneously run every version of Unix!)

In the opposite corner, to some degree, is IBM. The
POWER6 processor is a reincarnation of the classic RISC
speed demon, faster than a speeding locomotive. IBM hopes
to use its world-class fabrication technology to push the
POWER6 to clock frequencies in the 6.0GHz range. Although
IBM is not completely averse to hardware multithreading—
the POWER6 core is dual threaded—IBM disdains the
larger-scale threading that Sun espouses. In IBM’s view,
large-scale threading is suitable for web servers and other
applications in which many users intermittently clamor for
attention. But IBM says the UltraSPARC-T2 will be less
effective than POWER6 in computing applications requir-
ing high single-thread performance. (See MPR 12/10/07-01,
“Server Processors: Chapter 2007 [Part 2].”)

Sun argues that hardware multithreading ameliorates
the perennial memory-latency problem, because a thread
waiting for data simply yields to another thread that’s ready
to go. Nary a clock cycle goes to waste. Cache misses become
an opportunity, not a problem. In a brazen bid for the
speed-demon crown, Sun multiplies the UltraSPARC-T2’s
64 threads by the 1.4GHz maximum clock rate of each core
to claim an aggregate clock frequency of 89.6GHz.

When Sun’s multithreading strategy works, it’s great.
However, it assumes that another thread is always ready to go.
In some applications, thread-level parallelism is as elusive as
the instruction-level parallelism that mesmerized the archi-
tects of wide-issue superscalar processors in the 1990s. When
even the best four- or five-way superscalar designs were found
to average only about 1.5 instructions per cycle over time, the
early enthusiasm for wider pipelining soon waned. Today, few
processors venture beyond two- or three-way superscalar exe-
cution. The incremental performance improvement isn’t
worth the significant additional design complexity.

Nevertheless, Sun is onto something with Niagara. The
UltraSPARC-T2 sets a new standard for integration in server

processors. In addition to eight multithreaded SPARC cores,
the UltraSPARC-T2 has eight cryptography accelerators,
four FB-DIMM memory controllers, a dual-threaded
10Gb/s Ethernet controller, and an eight-lane PCI Express
controller—all on one chip. That level of integration is rarely
seen outside of system-on-chip embedded designs.

A Few Predictions
In my opinion, the UltraSPARC-T2 is the most visionary mul-
ticore design to date. Although MPR has covered massively
parallel processors with as many as 4,096 cores, those chips are
highly specialized. The UltraSPARC-T2 is a general-purpose
microprocessor (within the realm of server processors), yet it
embodies all the concepts discussed here. It’s a large-scale
multithreaded, multicore, system-on-chip microprocessor
that does symmetric and asymmetric multiprocessing at the
same time.

Microprocessors of the future will look a lot like the
UltraSPARC-T2. They will have many general-purpose
processor cores supplemented by special-purpose cores, on-
chip peripherals, and integrated I/O interfaces. And they will
be multithreaded at the core level, because hardware multi-
threading is relatively cheap and doesn’t require application
programmers to write explicitly multithreaded code.
Instead, the microprocessor manages the threading trans-
parently. (However, programmers may still choose to write
explicitly multithreaded code for other reasons.)

Ideally, all chip designers of the future will use devel-
opment tools like those championed by Tensilica. With rela-
tively little effort—more akin to software programming than
hardware design—engineers will rapidly generate dozens of
general-purpose and special-purpose processor cores.
These cores will share the same basic CPU architecture, but
their microarchitectures will be optimized for specific
tasks. Programmers will write code for all the cores in the
same programming language.

For explicitly parallel processing, I think programmers
will avoid explicit software-level multithreading because of
the problems it entails. (See MPR 4/30/07-02, “The Dread of
Threads.”) Instead, they will likely use technology similar to
that promoted by RapidMind. (See MPR 11/26/07-01, “Par-
allel Processing For the x86.”)

If my predictions are wrong, CPU architects will take
the easy way out. They will simply replicate the same basic
general-purpose processor cores on their multicore chips,
even if those cores aren’t optimal for all tasks. Hardware
design will be as sloppy as much software design is today. But
even if that design philosophy is popular in the short run, I
think it will eventually lose to the more optimal approach—
especially when other avenues to higher performance reach
their inevitable dead ends.

