
Intel will debut the first x86-based 3D-graphics processors.
So far, graphics is the oddest addition to the x86’s

growing list of target applications. A 30-year-old CISC
architecture designed for general-purpose processing
would seem to be seriously handicapped against special-
purpose GPUs, which are highly optimized for tasks like
pixel shading and texture mapping. But Intel is undeterred.
At Siggraph 2008—a graphics show, not a microprocessor
conference—Intel unveiled the first technical details about
its future x86-based GPU, code-named Larrabee.

Among other things, Intel revealed that Larrabee is a scal-
able microarchitecture supporting many possible implementa-
tions, with as few as four cores per chip or as many as dozens.
These cores will have coherent caches and will communicate
over a ring network on chip. Architectural improvements
include 16-lane SIMD extensions and four threads per core—
parallel-processing features not found in any other x86 chip.
Moreover, Larrabee has fully programmable graphics pipelines
and much less hard-wired acceleration logic than other GPUs.

Scheduled to debut in 2009 or 2010, Larrabee is a direct
challenge to the long-established GPUs from ATI (acquired
by AMD in 2006) and Nvidia. Those two vendors control
98% of the discrete-GPU market, according to Jon Peddie
Research. Intel’s first Larrabee devices will be discrete GPUs
on expansion boards for PCs, followed by integrated graph-
ics in system chipsets and CPUs. Last year, the total market
for GPUs (discrete and integrated) was 350 million units,
according to Peddie.

Intel’s Strategy: More Than Graphics
What’s next—x86 DSPs? Actually, Intel already tried some-
thing like that in the mid-1990s with its “native signal-
processing” initiative. Although Intel didn’t make tradi-
tional DSPs obsolete, today it’s routine for general-purpose
CPUs to handle signal-processing tasks once thought suit-
able only for discrete DSPs. (See MPR 5/8/95-03, “NSP
Shows Promise on Pentium, PowerPC.”)

However, there’s a crucial difference between Intel’s
latest x86-everywhere strategy and its signal-processing ini-
tiative of the 1990s. Back then, Intel wanted to move special-
ized processing into the host x86 CPU, not to a specialized
x86 DSP. This time, with Larrabee, Intel hopes to replace
existing GPUs with discrete chips of its own—or with inte-
grated graphics that are almost as good as discrete chips. In
other words, Larrabee is an aggressive frontal attack on the
entrenched specialized processors, not a flanking maneuver
intended to sell more CPUs.

Some observers compare Larrabee with Intel’s ill-fated
i740 graphics accelerator, introduced in 1998. However, the
i740 had a specialized graphics architecture, not an x86 archi-
tecture, and it was quickly swamped by superior GPUs from
ATI, Nvidia, and others. (See MPR 1/25/99-03, “Intel Stakes
3D Claim, But ATI Takes Lead.”)

Intel’s choice of the x86 for a comeback in the graphics
market speaks volumes. Although the ancient x86 architecture
isn’t ideally suited for high-end graphics processing, Larrabee
isn’t just a graphics processor. It also aims at high-performance

INTEL’S LARRABEE REDEFINES GPUS
Fully Programmable Manycore Processor Reaches Beyond Graphics

By Tom R. Halfhi l l {9/29/08-01}

Intel is spreading the x86 everywhere. No longer satisfied with existing strongholds in

PCs and servers, this year Intel has revived the x86 as a standalone embedded processor

and has introduced the first highly integrated x86-based SoCs. And as early as next year,

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

computing (HPC), or what Intel variously calls “high-
throughput computing” or “visual computing.” HPC appli-
cations include financial modeling, pharmaceutical develop-
ment, energy exploration, cryptography, weather forecasting,
climate modeling, and scientific research of all kinds.

Larrabee Foreshadows Intel’s Future
HPC is a fast-growing field with an insatiable appetite for
processing power. It’s particularly well suited for highly paral-
lel processors like Larrabee. That’s why ATI and Nvidia have
been pushing their GPUs in the same direction—a trend
known as “general-purpose GPU” (GPGPU). In recent years,
ATI and Nvidia GPUs have become more programmable
and have adopted other features desirable for HPC applica-
tions, such as double-precision FPUs. But x86 processors
have always been fully programmable and have had double-
precision FPUs for almost 20 years. Intel hopes to convince
HPC programmers that an x86-based GPU can leverage
existing x86 software-development tools and source code
and will have a more familiar programming model.

Another rationale for basing Larrabee on the x86 archi-
tecture is that future PCs will be able to use their Larrabee
GPUs as coprocessors for compute-intensive tasks other
than graphics. Video transcoding is a good example of a
highly parallel task suited for Larrabee. Although existing
GPUs can do the same thing—indeed, they’re doing it now,
in small ways—having a GPU that shares the same architec-
ture with the CPU could ease software development and task
sharing.

In addition, Larrabee helps Intel gain experience design-
ing manycore processors. For years, Microprocessor Report has
covered specialized processors with dozens, hundreds, or
even thousands of cores per chip. Meanwhile, Intel—the
world’s leading microprocessor company—is only now
readying its first eight-core chip. (It’s a server processor based
on the Nehalem microarchitecture.)

Although MPR doesn’t doubt that Intel has the expert-
ise to create larger multicore designs, reducing theory to prac-
tice on a commercial scale is always revelatory. With Larrabee,
Intel is leaping toward large-scale manycore designs that will
have dozens of cores per chip. That experience—and the
parallel software soon to be written for Larrabee—will be
valuable down the road, when Intel begins designing many-
core processors for PCs and servers.

Unprecedented x86 Diversity
Larrabee is only part of Intel’s x86-everywhere strategy. Ear-
lier this year, Intel’s Atom microprocessor marked the return
of discrete x86 processors expressly designed for embedded
systems, although Atom also reaches into subnotebooks and
low-end desktop PCs. (See MPR 4/7/08-01, “Intel’s Tiny
Atom.”) And in July, Intel introduced the first highly inte-
grated x86-based SoCs for networking and communications,
soon followed by similar SoCs for consumer electronics. (See
MPR 8/18/08-01, “Intel’s New SoCs.”)

Suddenly, there’s unexpected diversity among Intel’s
x86 chips. Intel has simultaneously designed three new x86
microarchitectures: Atom, Nehalem (officially and confus-
ingly dubbed the Intel Core Architecture), and the Larrabee
core. Each core represents a significant design effort, con-
ducted at disparate locations by different design teams. Other
than baseline x86 compatibility, these cores have little in com-
mon. Indeed, there are now more differences among Intel’s
own x86 microarchitectures than there are between the PC
processors from Intel and AMD.

Intel’s new processor cores are so different from each
other that they threaten to split the x86 architecture into
market-specific fragments. This unintended consequence, if
permitted to continue, could undermine the reasons for bas-
ing the designs on the x86 in the first place—software com-
patibility and easier software development. Intel hopes to
unite its diverging microarchitectures in the future, but some
features created for a graphics processor might never make
sense in a server processor, or vice versa. The last thing the
x86 needs is more architectural baggage to haul around.
Already, it lugs outdated instructions and features that
seemed modern when Intel engineers spent all of three weeks
defining the x86 instruction set in 1978.

Nevertheless, diverse x86 microarchitectures may be
unavoidable. The application spectrum that Intel is now pur-
suing looks too broad for a one-size-fits-all approach. Not
long ago, CPU architects hoped that multicore processing
might eliminate the need to design different cores for different
markets. In theory, one basic core could serve all purposes,
because designers could simply scale the number of cores per
chip up or down, as the application demanded. Although that
concept may still be valid within a particular domain, such as
PCs, Intel is spreading the x86 so far and wide that signifi-
cantly different microarchitectures may be inevitable.

Leveraging the x86 Architecture
According to Larrabee’s architects, upper management didn’t
absolutely mandate x86 compatibility for the new processor.
In fact, one experimental design crammed 80 single-precision
FPUs on a single chip, discarding the rest of the x86 CPU. But
that prototype, code-named Polaris, or the Tera-FLOPS
Research Processor, has little in common with the Larrabee
design now emerging from the lab. Even the on-chip network—
a critical part of any large-scale multicore design—was dif-
ferent. (See MPR 4/9/07-01, “Low-Key Intel 80-Core Intro:
The Tip of the Iceberg.”)

In retrospect, it’s hard to imagine choosing any architec-
ture but the x86 for Larrabee, given Intel’s broader ambitions
for the processor and the painful history of the i740. MPR
questioned the Larrabee architects closely on this point. They
defended their choice of the x86 on firm engineering grounds,
not just because it aligns with corporate strategy emanating
from Santa Clara.

From the start, the Larrabee design team wanted to
make a GPU with a fully programmable graphics pipeline.

2

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

3

In addition, the designers wanted to leverage their expertise
with the x86 and their existing software and development
tools. By adapting the x86 for Larrabee, Intel doesn’t have to
rewrite its assemblers, compilers, profilers, debuggers, simula-
tors, and drivers completely from scratch. Larrabee supports
the popular DirectX and OpenGL graphics APIs, and it can
run other existing middleware, after some modifications.

Programmability is a vital aspect of Larrabee. Since
their inception in the 1980s as hard-wired graphics accelera-
tors, conventional GPUs have gradually become more pro-
grammable, but they still have vital differences from general-
purpose processors. For instance, their memory models are
very different, lacking such concepts as virtual memory,
protected memory, and coherent caches. GPUs are heavily
threaded processors, but they can’t do context switching in
the same sense that CPUs do. Their ability to call procedures
is more limited. And only the latest GPUs from ATI and
Nvidia can natively manipulate double-precision floating-
point numbers, a critical requirement for some HPC appli-
cations. Figure 1 shows Intel’s view of Larrabee’s place in the
evolution of GPUs.

Larrabee brings the full flexibility of a general-purpose
processor to 3D graphics. Of course, flexibility is also a

handicap, because specialized logic usually outperforms
general-purpose logic. Frankly, MPR will be surprised if
Larrabee doesn’t trail the best GPUs from ATI and Nvidia
when independent benchmark testers get hold of it. How-
ever, we doubt that superior graphics performance will be
critical to its long-term success. The market for discrete
GPUs is relatively flat and dominated by avid gamers. We
expect Larrabee to be more important for the HPC market
and integrated graphics. Scaled-down versions of Larrabee,
integrated in the north-bridge chip or CPU, will likely satisfy
the majority of PC users.

Dr. Frankenstein Robs a Grave
Having settled on the x86 architecture, the Larrabee architects
did something surprising. They didn’t design an entirely new
x86 core or adapt the low-power Atom core (which wasn’t
finished yet). Instead, pressed for time and worried about
power consumption, they unearthed the brain of their new
processor from Intel’s graveyard. They derived the Larrabee
core microarchitecture from the RTL of the original Pentium,
introduced in 1993.

It’s not even the Pentium Pro, Pentium II, or Pentium
III—just the plain old Pentium. And remember, the Pentium

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

Figure 1. Larrabee has a fully programmable graphics pipeline, augmented with only a little specialized logic. Recent GPUs from ATI and Nvidia have
programmable pipelines, too, but they rely more heavily on fixed-function logic to deliver high performance. Programmability has become more
important to ATI and Nvidia as they pursue markets other than graphics. Interestingly, Larrabee also supports an alternative software-rendering model
similar to the one that prevailed before graphics accelerators arrived in the 1980s—except that Larrabee has vastly faster 21st-century logic.

4

was a close cousin of the even older 486. Both processors had
five-stage pipelines and in-order instruction execution. Essen-
tially, the Pentium merely doubled the 486 pipeline to create
Intel’s first superscalar x86.

Fifteen years later, Larrabee has almost identical integer
pipelines. It doesn’t spend power on instruction reordering,
speculative execution, or translating CISC instructions into
RISC-like micro-ops. Indeed, Intel has resurrected the origi-
nal Pentium so faithfully that Larrabee has none of the MMX
instructions and Streaming SIMD Extensions (SSE) added to
later versions of the Pentium and numerous descendants.
(See MPR 4/30/07-01, “Intel Goes On the Offensive.”)

Like Dr. Frankenstein, however, Intel has upgraded the
old brain with lots of new parts. Longtime friends may not
recognize the finished creation. Larrabee has the latest 64-bit
x86 extensions, new 16-lane SIMD extensions, additional
scalar instructions, the ability to execute four threads per
core, and other improvements. In those respects, Larrabee is
a superset of the Pentium and the most modern x86 design
yet seen, even surpassing Atom. Yet on a fundamental level,
it’s a throwback to 1993 and the good old days of dollar-a-
gallon gasoline.

Larrabee’s 64-bit extensions are the same as those found
in other recent Intel x86 processors. (See MPR 3/29/04-01,
“AMD and Intel Harmonize on 64.”) But four threads per
core is a big improvement. Until now, Hyper-Threading
(Intel’s brand name for chip multithreading) was limited to
two threads per core. Each thread has its own complete regis-
ter file, program counter, and status registers for preserving
contextual information. A hardware pointer chooses which
context is currently active, allowing the processor to switch

threads on every clock cycle, if necessary. Quadruple thread-
ing in Larrabee should reduce stalls, because the processor
can instantly switch to another context that’s ready to go.

With up to four threads per core, a Larrabee chip can
appear to have four times as many virtual cores as real
cores—and the number of real cores could reach dozens, in
high-end devices. In that sense, Larrabee could break the
vague manycore boundary to become Intel’s first massively
parallel processor. However, even virtual cores aren’t free.
The die cost in additional registers and wiring is particularly
significant for Larrabee, because other new features add
more context to preserve.

The Widest SIMD Units in Any x86
Among those new features are new SIMD instructions that
can perform an operation on as many as 16 operands at once.
Those 16 operands can be as wide as 32 bits, so the SIMD
datapaths are 512 bits wide—two to four times wider than
those in other x86 processors. Up to eight 64-bit double-
precision floating-point operations can execute at once.

Ironically, Larrabee lacks the older MMX and SSE
instructions in other x86 processors that can operate on as
many as eight operands at once. The latest version of SSE is
4.2, which adds seven new instructions to SSE 4.1. SSE 4.1 has
47 new instructions and appears in the current PC and server
processors based on the Penryn microarchitecture. SSE 4.2
will debut in the Nehalem microarchitecture later this year.

(Confusingly, Intel now refers to the Nehalem microar-
chitecture as the Intel Core Architecture, even though it’s the
third iteration in this naming scheme. The original Banias-
derived microarchitecture was also called the Intel Core
Architecture. For a time, the second version—Penryn—was
called the Intel Core 2 Architecture. Nehalem is really Core 3.)

Intel hasn’t yet concocted a confusing brand name for
the newer 16-lane SIMD extensions in Larrabee. For now,
they’re simply called “Larrabee new instructions.” Nor has
Intel publicly disclosed the extensions in detail. Intel says
Larrabee has 100 to 150 new instructions, mostly for vector
operations, but also 10 to 15 new scalar instructions. By any
measure, it’s a significant expansion of the x86 instruction
set. Although Intel consulted game developers and graphics
programmers when developing Larrabee, relatively few of the
new instructions are specific to graphics. Figure 2 illustrates
the way vector instructions integrate with the existing scalar
instruction pipeline.

The vector instructions are the most interesting additions
to Larrabee. They can manipulate integer and floating-point
data types up to 64 bits long. Some vector instructions—such
as a fused multiply-add—can manipulate three source
operands, instead of the two sources commonly handled by
other instructions. (One source is also the destination.) And
most vector instructions can fetch one of their source operands
from the L1 cache instead of a register.

Fetching operands from the L1 cache works in concert
with new cache-prefetch instructions. The Pentium already

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

Figure 2. Block diagram of Larrabee’s scalar and vector instruction paths.
The vector unit has its own register files, separate from the standard set
of x86 integer and floating-point registers. (Some earlier MMX and SSE
instructions share the floating-point registers.) Both datapaths share the
same L1 instruction and data caches, plus a local subset of the L2 cache.

5

had some prefetch instructions, but Larrabee improves on
them. If a vector instruction references a prefetched
operand, the cache effectively works like an extended register
file—without the extra latches required by real registers. Not
only that, but the processor can automatically expand 8- and
16-bit operands fetched from the cache into 32-bit integer or
32-bit floating-point values, with no performance penalty.
Other new instructions can explicitly evict data from the
cache. All together, these instructions give programmers
finer control over cache operations, if they wish to exercise it.

FMA Instruction Boosts Throughput
The fused multiply-add instruction (A × B + C) simultane-
ously performs two arithmetic operations on as many as 16
operands in the SIMD lanes. In other words, a single instruc-
tion performs a total of 32 operations per clock cycle. There-
fore, at 1.0GHz, the maximum theoretical throughput of
each Larrabee core is 32 gigaflops (billion floating-point
operations per second). At 1.0GHz, a Larrabee chip would
need 32 cores to reach one teraflops (trillion floating-point
operations per second). Alternatively, fewer cores running at
faster clock speeds could achieve the same performance.

Intel refers to the new SIMD engine as a vector pro-
cessing unit (VPU). It has numerous instructions for paral-
lel operations. It can shift and swizzle the contents of regis-
ters in several ways to realign data for efficient processing.
(Swizzling is the ability to copy multiple operands from
source registers to other registers in different arrangements.)
A single instruction can fetch a data element from memory
and broadcast it across multiple lanes in the vector registers,
eliminating the need to execute multiple load instructions to
fetch the same data. Figure 3 is a block diagram of a VPU.

Scatter-gather instructions, indexed by a vector register,
can load or store data at 16 noncontiguous memory
addresses. This capability is particularly valuable for graphics
but is useful for other datatypes as well. Intel says the scatter-
gather instructions allow the VPU to run 16 instances of a
pixel-shader routine simultaneously, gathering data from
many disparate memory locations.

The 16-lane VPU is no accident. Intel arrived at the
design by simulating various configurations of the SIMD
engines. For example, shader simulations indicated that it’s
more efficient for the VPU to process the red, green, and
blue components of a pixel separately than simultaneously.
In other words, the VPU can operate on 16 pixels at once in
the 16 lanes of the SIMD engines by processing the RGB
components serially, instead of using 15 lanes to process the
RGB components of five pixels in parallel. Either way, it’s
parallel processing, but Larrabee’s VPU appears to be more
efficient when decomposing the data by color components
instead of by pixels.

Not a Conventional GPU
By itself, Larrabee’s approach to pixel shading isn’t innova-
tive. Nvidia’s GeForce 8 processor handles pixel shading in a

similar way, even outdoing Larrabee in one respect by quad-
pumping each of its eight-lane SIMD engines to perform 32
operations in parallel. However, the Nvidia GPU manages
much of this process in fixed-function hardware, not in soft-
ware. In Larrabee, a control thread—running in parallel with
the shader threads—manages the program loops and cache
movements. The whole process is under program control.

Programmability is the big difference between
Larrabee’s x86-based graphics pipeline and a conventional
GPU pipeline. Although recent GPUs from ATI and Nvidia
have programmable pipelines, they rely on hardware acceler-
ation to a greater extent than Larrabee does. Larrabee does
use fixed-function logic for texture filtering, but not for ras-
terization, post-shader blending, and other graphics func-
tions that are still hard-wired in conventional GPUs.

As a less specialized processor, Larrabee has more in
common with IBM’s Cell Broadband Engine than it does
with GPUs from ATI and Nvidia. Cell processors are found
in everything from the Sony PlayStation 3 to professional
workstations, servers, and supercomputers, where they per-
form a wide variety of tasks. Intel has similar ambitions for
Larrabee.

But Larrabee differs from Cell, too, in important ways.
Instead of using a single processor core to control multiple
SIMD engines, as Cell does, each of Larrabee’s x86 cores is
capable of acting as a SIMD engine and as a control processor.
Indeed, Larrabee’s cores can perform both functions at the
same time, in different threads. In a Cell processor, the lone
Power Architecture core has a more dominant master/slave

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

Figure 3. Block diagram of Larrabee’s vector processing unit (VPU).
Note the special hardware for automatically converting the datatypes
of operands, for replicating loaded data across multiple lanes of the
SIMD engine, and for reordering data. The mask registers have one
predicate bit per vector lane, allowing the VPU to selectively store
results in registers or memory. Predication eliminates the need for some
conditional branches and gives the compiler more freedom when
scheduling instructions in heavily branched code. More important, the
mask registers support scatter-gather memory operations and the same
kind of data-parallel programming used with other GPUs.

6

relationship with the eight Synergistic Processor Elements
(SPE), which are similar to Larrabee’s VPUs.

Another important difference is that Cell’s SPEs have a
different architecture than the Power control processor. In
Larrabee, the VPUs are an extension of the x86 architecture.
Larrabee is a symmetrical, homogeneous multicore design,
whereas Cell is an asymmetrical, heterogeneous multicore
design. (See MPR 2/14/05-01,“Cell Moves Into the Limelight.”)

Programmability Makes Trade-Offs
Full programmability with a general-purpose CPU architec-
ture gives Larrabee an advantage in flexibility over other
GPUs. Of course, the flip side of programmability is that a
programmer must write the control code, which can be a
disadvantage. Also, the more specialized hardware of other
GPUs may score higher on 3D-graphics benchmarks while
consuming less power. In other applications, Intel’s less spe-
cialized hardware may have an edge. Overall, MPR expects
competing GPUs to deliver more throughput per watt when
running software that heavily exercises their fixed-function
hardware, whereas Larrabee has a chance to shine when
running software that’s less graphics intensive but keeps the
SIMD engines busy.

Intel claims that Larrabee’s graphics performance will
scale impressively across large numbers of cores. Figure 4
shows the performance of three action games running on
simulated Larrabee processors that have as few as eight cores

and as many as 48 cores. Within this range, at least, per-
formance is remarkably consistent and scales at an impres-
sively linear rate.

Figure 5 shows some additional preliminary bench-
mark results, again based on Intel’s simulations. This
time, Intel included a few tests outside the gaming realm
and increased the maximum number of processor cores
to 64. Performance doesn’t scale quite as linearly as in the
previous figure, but it’s still impressive. Keep in mind that
many programmers are still struggling to exploit dual-
and quad-core microprocessors and would gladly trade a
week’s worth of Jolt Cola for results like this.

Scaling With Cores and Clock Speeds
We can’t help noticing that Intel’s simulations vary the
number of processor cores from as few as eight per chip to
as many as 64. Intel hasn’t divulged the number of cores in
the first Larrabee chips and cautions that test simulations
aren’t tantamount to product announcements. However,
that range (8 to 64) is probably telegraphic. To compete in
the discrete-graphics arena with the latest GPUs from ATI
and Nvidia, high-end Larrabee devices will need dozens of
cores. Likewise for Larrabee chips intended for HPC.

In addition to scaling the number of cores, Intel can
also scale the clock frequency. Intel’s Siggraph paper
refers to a “Larrabee unit” as one processor core running
at 1.0GHz. Hence, a 32-core device clocked at 1.0GHz
equals 32 Larrabee units—as does a 16-core device

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

Figure 4. Graphics performance of three action games on simulated
Larrabee processors with eight to 48 cores. As the number of cores
rises, performance scales on a very linear slope—testimony to the
efficiency of the processor and the inherent parallelism of the soft-
ware. Intel provided this performance data, which is rather vague and
hasn’t been verified with production silicon. However, this degree of
scaling is believable when running data-parallel tasks on highly parallel
processors.

Figure 5. Preliminary benchmark testing on simulated Larrabee processors
with eight to 64 cores. Most of these tests are graphics functions in action
games, but some are math operations and other functions useful in a wider
variety of applications. Although performance starts to fall off in some tests,
it still rises at a nearly linear rate with dozens of cores. (Data source: Intel.)

7

clocked at 2.0GHz. To keep power consumption within
bounds, the maximum clock frequency probably won’t
exceed 3.0GHz, and even that speed pushes the envelope for a
large implementation. At 3.0GHz, the maximum theoretical
throughput of a large 64-core device would be six teraflops,
but power consumption would probably be excessive. The
greater use of fixed-function acceleration hardware in other
GPUs helps keep them relatively power efficient, assuming
the hardware is well utilized. When that hardware is idle, it
becomes a liability.

In part, Larrabee’s power/performance ratio depends
on whether Intel introduces the chips in a 45nm or 32nm fab-
rication process. Around the time Larrabee debuts in 2009 or
2010, Intel will be migrating its leading-edge CPUs from
today’s 45nm process technology to the next-generation
32nm process. Although Intel intends to manufacture
Larrabee in the same fabrication technology used for other
Intel processors, it isn’t clear which process will be the
launchpad for Larrabee. Our guess is 45nm, because Intel
probably wants to reserve the newer process for its leading-
edge CPUs.

An often-overlooked aspect of Larrabee is that it’s
designed to scale downward as well as upward. Intel plans to
integrate Larrabee into CPUs and chipsets for business PCs,
notebook PCs, and low-end to midrange home PCs. It
might even be suitable for a mobile Internet device (MID).
For those systems, a Larrabee implementation with four or
eight cores might make sense. Graphics performance will be
lackluster by gamer standards but adequate for other pur-
poses. Of course, integrated graphics save power, money,
and board space.

With Larrabee, it might even be possible to continue
utilizing the integrated graphics cores if a performance-
hungry user installs a graphics card later. Today, installing a

graphics card in a PC that has integrated graphics disables
the built-in graphics processor, rendering it moot. In a
Larrabee-integrated system, those integrated x86 cores
might still remain part of the graphics pipeline or be avail-
able for other tasks. They are, after all, x86 cores capable of
general-purpose processing.

However, to fully exploit this potential, operating sys-
tems must be able to recognize Larrabee’s cores as system-level
peer processors available for general-purpose workloads.
Initially, Larrabee will be hidden from the operating system
by its Intel driver software, just as ATI and Nvidia GPUs are
hidden below their drivers today. (Figure 6 illustrates
Larrabee’s software stack.) MPR suspects that Apple will
modify Mac OS X for Larrabee before Microsoft modifies
Windows. Apple has more control over all aspects of hard-
ware and software in its systems.

Multithreading at Multiple Levels
Conventional GPUs are massively threaded. They can mar-
shal thousands of lightweight threads to perform tasks that
have great inherent parallelism. In GPU terminology, a thread
is a stream of operations running in one lane of a SIMD
engine. Larrabee’s VPUs support the same kind of multi-
threaded data parallelism, though not to the same degree. At
a higher level, Larrabee also supports a threading model of
task parallelism that has more in common with general-
purpose CPUs. Larrabee can blend these data-parallel and
task-parallel threading models together, a concept Intel calls
“braided parallelism.”

At the highest level of threading are the hardware-
managed threads Intel calls Hyper-Threading on other x86
processors. These are really process threads, because they can
execute a process as heavy as an application program or an
operating system. They can also execute smaller tasks, such as

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

Figure 6. Larrabee’s software stack. At the lowest level, a micro operating system from Intel runs on Larrabee (not on the host CPU) to support the
higher-level driver software. Some programmers may tackle the challenge of writing native application software that runs directly on the micro oper-
ating system, bypassing the driver in a quest for higher performance. In most cases, however, application programs (such as games) will access
Larrabee through the DirectX or OpenGL APIs. Those APIs run on the driver, which runs on the system’s host CPU. In the future, host operating sys-
tems may have the ability to bypass the driver and use Larrabee’s processors as if they were system-level processors, not just graphics coprocessors.

8

the lighter-weight threads spawned by application pro-
grams and operating systems. As explained above, each x86
core in Larrabee can simultaneously manage up to four of
these threads, allocating a separate register file and context
to each one. These threads can share memory through the
L1 and L2 caches.

On Intel’s other multithreaded x86 processors, Hyper-
Threading is largely transparent to application program-
mers. The operating system decides whether the processor
will assign a separate hardware context to an application
program or to a thread it spawns. Larrabee is similar. Pro-
grammers can invoke hardware-level threading through the
OpenMP API or Intel’s Thread Building Blocks, which build
on the Posix Thread API. Multithreading at this level can be
transparent to programmers. However, Larrabee gives pro-
grammers a little more control over “affinity”—the ability
to assign hardware threads to specific processor cores, and
hence to the same caches.

Posix pthreads map directly to hardware-level threads.
Intel has extended the Posix API to let programmers assign
pthreads to a particular processor core and even to a specific
thread context on that core. The OpenMP API is similar;
special pragmas in the Larrabee C/C++ compiler let pro-
grammers explicitly assign software threads to hardware-
managed threads. At a slightly higher level of abstraction,
Intel’s Thread Building Blocks provide a task-scheduler API
that maps software threads to hardware threads.

Untangling Threads, Fibers, and Strands
Below hardware-managed multithreading is a lower level of
threading managed in software. These lower-level threads

are called fibers. They execute tasks by running SIMD
instructions on the VPUs. Compilers can decompose the
data into chunks, which fibers can execute in parallel with-
out stalling on interdependencies or memory-access laten-
cies. In other words, if one chunk of data needs results from
processing another chunk of data—or must wait for addi-
tional data to load—the compiler or run-time software can
assign those chunks to different fibers that execute serially,
not in parallel.

At the very lowest level of threading are individual oper-
ations destined for parallel execution in the 16-lane SIMD
engines of the VPUs. As mentioned above, some new SIMD
instructions in Larrabee can perform operations on as many
as 16 operands at once. These 16 operations are subdivisions
of a fiber; Intel calls them strands. Each strand corresponds to
a thread on other GPUs. Figure 7 illustrates these different
levels of multithreading.

In a previous example, we described the way a VPU can
simultaneously operate on 16 pixels in the 16 lanes of a SIMD
engine by processing the RGB components serially. That is,
a SIMD instruction can operate on the red components of
16 pixels at once, followed by another SIMD instruction
that operates on the green components of the same 16 pixels,
followed by another SIMD instruction that operates on the
blue components of those pixels. In this way, Larrabee can
perform a complete operation on the RGB components of 16
pixels using only three instructions.

By intelligently assigning chunks of pixels to different
fibers, compilers can use Larrabee’s numerous SIMD
engines to perform the same operations on many chunks of
16 pixels, in parallel with each other. The goal is to avoid

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

Figure 7. Larrabee’s multithreading model. Heavyweight threads, managed by the processor cores, can run application programs and operating
systems. Fibers are software-managed lightweight threads for SIMD operations. Strands are individual operands manipulated by SIMD instructions
in the 16 lanes of each VPU. This figure illustrates data parallelism, not task-level parallelism. Intel refers to the combination of the two parallel-
threading models as “braided parallelism.”

9

data dependencies and memory stalls among the fibers.
This orchestration can be extremely efficient, though it
requires the compiler to understand the execution laten-
cies and caching characteristics of the processor. Differ-
ent implementations of Larrabee—with different num-
bers of processor cores, different-size caches, and so
on—may require programmers to recompile their soft-
ware to get the best possible performance.

At the highest level, heavyweight threads composed
of several fibers can take turns executing to hide delays
caused by their own interdependencies and memory
accesses. One thread might be a control process that’s
managing the whole thing. Of course, the same braided
parallelism can be happening at the same time on other
processor cores on the chip.

Larrabee’s multilevel threading model appears
mind-boggling, but APIs hide much of this complexity
from application programmers. Indeed, when using the
DirectX and OpenGL APIs, the shader compiler can han-
dle the interleaving of threads, fibers, and strands. Game
programmers often have in-house development tools for
creating animation at even higher levels of abstraction.
In addition, some third-party tool vendors intend to
support Larrabee. Among them is RapidMind, which has
an innovative development platform for parallel processors,
including GPUs, IBM’s Cell, and existing x86 chips. (See
MPR 11/26/07-01, “Parallel Processing For the x86.”)

Intel Simplifies the On-Chip Network
Manycore and massively parallel processors often link their
cores together in an on-chip network configured as a mesh or
fabric. In this topology, each core has direct connections with
all its neighbors. Local groups of cores are typically arranged
in nodes or tiles, often with additional connections among
their most distant members. Sometimes, long rows and
columns of cores are linked by datapaths running across the
chip. A mesh provides numerous local and global pathways
among the cores, but it also requires lots of wiring. In some
cases, the wiring is dense enough to limit the complexity of
the cores or the size of the fabric.

In contrast, Larrabee has a simpler ring topology. Each
x86 processor core, L2 cache, and block of fixed-function logic
is attached to only one point on the ring, which extends
from one end of the chip to the other. To reduce the latency
of traffic circling the ring, the pathways are bidirectional—
there’s a 512-bit datapath in each direction (clockwise and
counterclockwise). In addition, separate rings are dedicated to
memory addressing and cache synchronization. Figure 8 is a
block diagram of a four-processor ring.

Each “stop” or node on a ring represents one clock cycle
of wire latency. Transferring data from one node to an imme-
diate neighbor takes one cycle. Transferring data to a node
that’s two stops down the line requires two clock cycles, and so
on. The worst-case latency for traffic circling the ring depends
on the number of cores and other components attached to the

network. There’s no crossbar switch to provide shortcuts, so a
communication between the two most distant nodes must
travel halfway around the ring.

Intel settled on a ring topology to simplify the design,
cut costs, and get to market faster. Although a ring isn’t as ver-
satile as a mesh, it simplifies the wire routing and allows Intel
to populate the network with relatively complex 64-bit x86
processor cores. Most manycore and massively parallel chips
that have mesh fabrics also have simpler processor cores. In
some cases, those cores are relatively primitive 8- or 16-bit
processors—although their design is also dictated by the spe-
cialized tasks they perform, not just by the complexity of their
on-chip networks.

For example, most of PicoChip’s massively parallel
devices have several hundred 16-bit multiply-accumulate
(MAC) processors and 16-bit integer processors arranged in a
dense on-chip fabric. They specialize in signal processing, not
graphics processing. (See MPR 10/14/03-03, “PicoChip Makes
a Big MAC.”) Interestingly, PicoChip’s latest design—the
PC302 chip for femtocells—significantly reduces the num-
ber of programmable processor cores in favor of greater hard-
ware acceleration. However, the PC302 retains the PicoArray
mesh fabric. Another example of a large-scale multicore
processor with a mesh fabric is Tilera’s 64-core Tile64 chip. In
this design, the “tiles” are 64-bit VLIW processor cores. (See
MPR 11/5/07-01, “Tilera’s Cores Communicate Better.”)

The traditional drawback of a ring network like
Larrabee’s is the longer signal delay when shuttling data
between nodes that aren’t immediate neighbors. In a mesh
network, nearby nodes might have direct pathways to each
other. According to Intel, the latency inherent in Larrabee’s

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

Figure 8. Block diagram of Larrabee’s on-chip network. Four to 16 processor
cores attach to a bidirectional ring with 512-bit datapaths in each direction.
Other components attached to the ring include the shared L2 cache, memory
controller, fixed-function graphics logic, display controller, and system I/O
interfaces. Transferring data between each “stop” or node on the ring requires
one clock cycle. Because the ring is bidirectional, traffic between the most
distant cores needn’t travel more than halfway around the ring. Intel has not
disclosed the width or speed of the system I/O interface, which will undoubt-
edly vary with the implementation.

10

ring network is less significant than the usual memory latency
for loads and stores, so the ring won’t slow things down. In
other words, the processors will spend more time waiting for
data to arrive from off-chip memory than they will spend
waiting for data to circle the ring. Of course, this equation
depends on the number of nodes attached to a ring and the
likelihood that widely separated nodes will have to commu-
nicate with each other. Intel says the rings will be limited to
four to 16 processor cores. Beyond that threshold, the ring
grows so large that external memory latency won’t hide the
internal network latency.

For designs integrating more than 16 cores, Larrabee
chips will implement multiple rings, perhaps with fewer
than 16 cores each. Intel hasn’t described the inter-ring con-
nections in detail. Inevitably, communications between dis-
tant cores on different rings will suffer, but cleverly written
(or cleverly compiled) software can minimize the need for
these long-distance calls. By decomposing the data into
chunks small enough to be crunched by the processors on a
single ring, a program can distribute a large workload
throughout the chip, with little or no need to share data
among multiple rings.

Dividing and Sharing the L2 Cache
Each x86 processor core in Larrabee has its own L1 instruc-
tion and data caches, but they all share a global L2 cache
attached to the ring. Each L1 cache is 32KB—four times the
size of the L1 caches in the original Pentium. The extra room
is necessary because Larrabee’s quad-threaded cores would
thrash a smaller cache while switching contexts among the
threads. (The Pentium, of course, was a single-threaded
processor.)

Although the L2 cache is a global resource, processor
cores don’t have unrestricted access to it. Each core is assigned
a 256KB subset of the L2 cache. This arrangement has two
benefits. First, and foremost, it allows all processors on a ring
to access the L2 cache in parallel, each fetching data from its
own portion of the cache. Parallel access greatly improves
bandwidth between the L1 and L2 caches. Second, subdi-
viding the L2 cache prevents one or a few cores from
monopolizing the whole cache at the expense of their fellows.

The disadvantage of subdividing the cache in this man-
ner is the possibility of uneven utilization. Depending on their
workloads, some cores might starve for cached data while
other cores make relatively little use of their portions. Uneven
utilization is more likely to happen when multiple workloads
are unbalanced or completely different from each other. For
3D graphics and other data-intensive tasks, the workloads
should be sufficiently similar and evenly distributed to avoid
this problem. This is another instance in which clever pro-
grammers or compilers can markedly improve performance.

The L2 cache is fully coherent. A separate ring in the
on-chip network handles synchronization among the cache
subsets dedicated to each core. When a core writes data to its
portion of the L2 cache, the cache manager automatically

signals the other subsets to flush their corresponding “dirty”
data, if necessary. Processor cores can read data from their
cache subsets in parallel with other cores, unless the ring’s
datapath becomes congested. In those cases, the stalled core
can switch to another thread that may not be blocked.

Because Intel allots 256KB of L2 cache for each proces-
sor core, Larrabee can manipulate relatively large “tiles” of
pixels when rendering graphics. Larger tiles are often pre-
ferred because they reduce the chance of a single polygon
spanning multiple tiles. Intel says that as long as an entire tile
fits in a 256KB subset of the cache, there’s almost no penalty
in rendering speed for using larger tiles. A tile measuring 128
× 128 pixels in 32-bit color plus depth requires 128KB—only
half the space available in each core’s subset of the L2 cache.
That leaves plenty of room for caching other data.

Overall, Larrabee’s memory hierarchy and load/store
model more closely resemble a general-purpose CPU than a
conventional GPU. Data flows through the L1 and L2 caches
as expected, with little or no manual intervention, although
programmers can certainly use the new prefetch instructions
and other cache-control operations to optimize critical func-
tions. Programmers will welcome Larrabee’s memory
model, particularly for applications other than graphics.
Other GPUs have a more distributed memory model, forgo-
ing a large shared memory like Larrabee’s global L2 cache.

The Importance of x86 Compatibility
Larrabee has the potential to upset the GPU market. By
reverting to a 15-year-old x86 microarchitecture (albeit
with many improvements) and adopting a simple ring for
the on-chip network, Intel has created a very scalable basic
design. A small implementation can be integrated into a sys-
tem chipset or host CPU. Larger implementations can aim
for different segments of the discrete-GPU and HPC mar-
kets. These markets aren’t zero-sum games, but if Larrabee
succeeds, it will take sales from ATI and Nvidia.

For software developers, system vendors, and users,
there are advantages to having all the system’s processors
based on the x86. The same basic driver software could
work with integrated graphics or discrete graphics. In a sys-
tem with discrete graphics that isn’t currently running a
heavy graphics workload, a Larrabee GPU could offload
other tasks from the host CPU. In a PC with integrated
Larrabee graphics, a performance-minded user could add a
Larrabee graphics card, and the system could still use the
integrated Larrabee cores to assist the discrete GPU or per-
form other tasks.

More companies are trying to leverage the processing
power of GPUs for things other than graphics, even in ordi-
nary PCs. The latest versions of Adobe Photoshop, After
Effects, and Premiere Pro can outsource such tasks as image
rotation, zooming, panning, antialiasing, compositing, and
video effects to an Nvidia Quadro or GeForce GPU. Elemental
Technologies recently announced the Badaboom Media
Converter, which uses Nvidia GPUs for video transcoding—a

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

11

chore that runs painfully slow on CPUs. Nvidia is encour-
aging developers to create more products like these. In 2006,
Nvidia introduced the Compute Unified Device Architec-
ture (CUDA), a C/C++ platform for developing and running
massively parallel software on Nvidia processors. (See MPR
1/28/08-01, “Parallel Processing With CUDA.”)

CUDA has some impressive wins. Among other things,
it’s used for geographic information systems, by Manifold; for
biochemistry, by Max Planck; for weather modeling, by the
National Center for Atmospheric Research; for financial mod-
eling, by SciComp; for oil and gas exploration, by Seismic-
City; and for medical imaging, by TechniScan. The recent
release of CUDA client software for protein folding has added
more than 1.2petaflops (1,200 trillion floating-point opera-
tions per second) of distributed processing power to Stanford
University’s Folding@Home project on the Internet.

Although CUDA is gaining followers, it’s surprising
how long GPUs have been underutilized in millions of PCs.
When a PC with a powerful graphics card isn’t running an
action game or something equally taxing, the GPU is little
more than a case heater. An x86-based GPU like Larrabee
might attract more software development and put those
wasted resources to work.

That said, we don’t wish to overstate the importance of
Larrabee’s x86 compatibility. In some ways, the compatibil-
ity is superficial or irrelevant. Existing programs written
and compiled for single-core or even multicore x86 CPUs
cannot take advantage of Larrabee’s manycore resources
without some recoding and recompilation. The extent of
modifications depends greatly on the program. Developers
must banish all fantasies of simply recompiling their serial
code to run on a parallel processor—whether the parallel
processor is Larrabee or something else. Existing software
that uses MMX or SSE instructions will need rewriting, too,
because Larrabee’s Pentium-derived x86 core lacks those
instructions.

In fact, Larrabee’s x86 heritage will likely be invisible to
most application programmers. They usually write software
to high-level APIs, not to the low-level instruction-set archi-
tecture. The style and quality of the development tools will be
more influential than the instruction set. Indeed, the archi-
tectures of ATI and Nvidia GPUs have always been hidden
from programmers by driver-level software. Their architec-
tures can change from one generation of GPUs to the next
while maintaining compatibility with application software.
Nevertheless, the attraction of x86 compatibility is a factor
that could lure developers toward Larrabee.

Speculating on Intel’s Strategy
At times in this article, we have expressed doubts that
Larrabee will exceed or even match the power/performance
benchmarks of GPUs from ATI and Nvidia. Of course, this
is pure speculation on our part, because Larrabee silicon
isn’t yet available for independent testing. One reason for
our skepticism is that an x86-based GPU with minimal

hardware acceleration seems poorly matched against highly
specialized GPUs from vendors with more experience in the
field. Furthermore, we perceive that superior graphics per-
formance is not Intel’s top priority for Larrabee—at least,
not at this time.

However, Larrabee can succeed without beating ATI
and Nvidia in 3D graphics. Even if Larrabee doesn’t dethrone
the champions, it can hurt them by capturing market share in
the lower segments of the graphics market. Larrabee can also
win devotees in the growing HPC market. If ATI and Nvidia
continue pursuing HPC more aggressively, they may be
forced to make architectural changes that impair the progress
of their own graphics performance. Over time, as the GPUs
from all vendors edge closer to general-purpose processing,
the playing field could level out.

Another possibility is that Intel could use Larrabee as a
template for different manycore-processor designs. Only a
few of the new SIMD extensions in Larrabee are specific to
graphics. By swapping Larrabee’s fixed-function graphics
logic for other kinds of application-specific logic, Intel could
produce chips optimized for networking, communications,
video processing, signal processing, and other purposes.
With the addition of some string-handling acceleration, a
future descendent of Larrabee might even make a killer
Googleplex-on-a-chip.

Intel’s fab strategy is another factor to consider. Although
Intel is rightly regarded as the world’s largest microprocessor
company, it’s also the world’s largest captive foundry. To sustain
its huge capital investments in multibillion-dollar fabs and
biennial process-technology advances, Intel must generate
the massive revenues that only high-volume products can
deliver. Intel can’t bother with niche products or markets, so
the general-purpose orientation of Larrabee could be a plus.

Larrabee could help Intel wring more profit from its
fabs by creating demand for GPUs and GPU-integrated
chipsets that trail the company’s leading-edge process tech-
nology by a generation. For instance, Intel could manufacture
the first Larrabee devices at 45nm while moving its high-end
PC and server processors to 32nm. The 45nm fabs would stay
busy a few years longer, working wonders with Intel’s amor-
tization tables. On the other hand, if Intel has enough fab
capacity to manufacture top-of-the-line Larrabee parts in the
latest-generation fabrication technology, it would exert more
pressure on ATI and Nvidia to keep up.

Larrabee’s Success Isn’t Guaranteed
What might go wrong for Intel? If Larrabee’s 3D-graphics
performance isn’t competitive, ATI and Nvidia can success-
fully defend their high-end graphics business. Intel could
respond by throwing more cores at the problem, but heat and
power will soon impose a limit. If Intel tries to compensate
by manufacturing high-end Larrabee devices in its latest fab-
rication technology, the additional load on Intel’s leading-
edge fabs could slow production of Intel’s all-important PC
and server processors.

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

12

Even lower-end graphics customers might avoid
Larrabee if AMD does a better job of integrating graphics with
PC processors than Intel does. Poor graphics performance
could make HPC customers reluctant to use Larrabee, too.

Another obstacle is software development. If porting
or writing code for Larrabee appears too daunting, the ini-
tial lure of x86 compatibility could lose its luster. Larrabee

doesn’t solve the fundamental computer-science problems
of writing parallel software or debugging multithreaded
software. Indeed, Larrabee’s multiple threading models will
leave some programmers scratching their heads and others
fretting about deadlocks. (See MPR 7/28/08-02, “Tools for
Multicore Processors,” and MPR 4/30/07-02, “The Dread of
Threads.”)

Larrabee’s driver software is another potential trap-
door. The driver must translate DirectX or OpenGL calls
into native code for Larrabee’s unconventional graphics
pipeline. ATI and Nvidia have been optimizing their drivers
for ten years. When Larrabee debuts, Intel’s drivers will have
been under development for maybe two years. Driver
bugs—always a hazard with new GPUs—can break popular
games and other graphics programs. Already, some PC users
complain about software compatibility on Intel’s integrated-
graphics chipsets. Early adopters of Larrabee might wish
they had made the safe choice of buying an ATI or Nvidia
graphics card instead.

For AMD/ATI and Nvidia, the biggest threat from
Larrabee may be psychological. They must fight any percep-
tion that Intel’s onslaught is irresistible. Our conclusion is
that Larrabee is an innovative design and a potential winner,
but triumph is by no means certain, and even its success
won’t necessarily clear the field of competitors.

© I N - S T A T S E P T E M B E R 2 9 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Intel’s Larrabee Redfines GPUs

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

F o r M o r e I n f o r m a t i o n

Intel plans to introduce the first Larrabee devices in 2009
or 2010. They will be GPUs on expansion boards for PCs,
primarily for games but also suitable for high-performance
computing applications. Later implementations will be
integrated with system logic or CPUs. Intel will announce
specific products, prices, and availability near introduction.
For more information, visit:
• www.intel.com/pressroom/archive/releases/

20080804fact.htm
Intel’s Siggraph paper on Larrabee is available here:
• http://softwarecommunity.intel.com/UserFiles/en-

us/File/larrabee_manycore.pdf

