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Going Parallel With Prism
New Analysis Tool Helps Programmers Refactor Serial Code

By Tom R. Halfhi l l  {4/27/09-01}

It’ll be a long time—maybe forever—before someone invents a magic compiler that trans-

forms existing serial code into optimized parallel code. Meanwhile, hard-pressed program-

mers are tackling the job by hand. Line by line, they pore over their programs, resolving 

data dependencies and rearranging functions for parallel 
execution on multicore processors. It’s drudge work, but 
somebody has to do it. Lots of somebodies.

Now their task will be a little easier. C riticalBlue has 
introduced Prism, a code-analysis tool that helps developers 
extract thread-level and system-level parallelism from legacy 
programs written in sequential code. After running the tar-
get program in a software simulator that captures dynamic 
trace data, developers can use Prism to analyze the results in 
numerous ways. With raw statistics, expandable tables, tele-
scoping charts, and data-flow graphs, Prism reveals detailed 
views of a program’s mechanics. It can identify data depen-
dencies that thwart parallelism, suggest modifications to 
source code, and estimate performance improvements.

Most important, P rism helps developers explore vari-
ous what-if scenarios so they can make intelligent decisions 
before rewriting any code. Will modifying two or more func-
tions to eliminate their interdependencies actually increase 
throughput? Will rewriting a different function yield a big-
ger payoff? Will a single-threaded program run twice as 
fast on a dual-core processor? Will the same program run 
four times faster on a quad-core processor? When does the 
overhead of creating and terminating threads outweigh the 
gains of greater parallelism? Without this foreknowledge, 
programmers can waste months on dead-end experiments.

Prism is a new direction for CriticalBlue, though it builds 
on the Scottish company’s expertise. Until now, C ritical-
Blue’s flagship product was C ascade, a design-automation 

tool. Cascade helps developers convert high-level software 
functions written in C or C++ into the RTL required to cre-
ate hardware coprocessors. Prism is strictly a code-analysis 
tool, not a hardware-generation tool, but the experience 
gained from analyzing dynamic traces of program execution 
for Cascade is the foundation for Prism. Although Cascade 
remains a live product, the rise of multicore processors is 
creating demand for new parallel-programming solutions.

Like C ascade, P rism is for embedded-system developers, 
not programmers writing software for PCs and servers. It cur-
rently supports ARM and MIPS processors intended for mul-
ticore SoCs, but not ARC, x86, SPARC, or Tensilica processors. 
Nor does Prism support GPUs, an increasingly popular alter-
native for parallel processing. Versions for the Power Architec-
ture and Renesas SH-Mobile architecture are in development. 
CriticalBlue says additional CP U architectures are relatively 
easy to support and will depend on customer demand.

Prism requires a separate simulator to gather the dynamic 
trace data, and it’s limited to symmetric multiprocessing 
(SMP) on shared-memory systems. C urrently, it doesn’t 
support asymmetric multiprocessing (AMP)—a common 
system architecture in embedded systems using two or more 
processors. C riticalBlue says most customers wanted SMP 
support first.

Compatibility With Existing Tools
CriticalBlue delivers Prism as a plug-in module for the Eclipse 
Integrated Development Environment (IDE), an open-source 
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framework rapidly gaining popularity among programmers. 
Eclipse isn’t specific to any particular CPU architecture, oper-
ating system, or programming language. By delivering Prism 
as an E clipse plug-in, C riticalBlue avoids the considerable 
effort required to develop a proprietary IDE  and convince 
programmers that it’s better than existing tools.

Nor has CriticalBlue reinvented the wheels of compilers 
or parallel programming. Prism works with any compiler 
and assumes the legacy code was written in ANSI-compliant 
C, C ++, or assembly language. C urrently, P rism assumes 
most programmers will implement thread-level parallel-
ism using the Posix Threads library. Posix “pthreads” are a 
platform-agnostic way to implement multithreading in C 
and C++ (see Figure 1). For Toshiba, a lead customer, Prism 
also supports the Venezia “V-thread” API. CriticalBlue says 
Prism could support virtually any threading library, if cus-
tomer demand warrants it. A lthough programmers who 
aren’t using Eclipse and pthreads may still find Prism useful 
as a code-analysis tool, it works best for programmers who 
are coding in C, with Eclipse as their front-end IDE.

Using Prism is a five-step process. First, Prism analyzes 
the dynamic trace data gathered by running the target pro-
gram in a software simulator. N ext, before rewriting any-
thing, programmers study the results and explore various 

alternatives for parallelizing the code. The 
third step is to choose the best alternatives 
(whatever the developer’s priorities) and 
write the necessary code, starting with 
Prism’s suggestions. N ext, P rism checks 
for problems that could interfere with 
proper execution and optimum perfor-
mance. Finally, programmers can repeat 
the process to make additional perfor-
mance improvements.

As mentioned above, P rism doesn’t 
include a software simulator. Instead of 
reinventing that wheel, too, C riticalBlue 
assumes each developer will use a simu-
lator already available for the target plat-
form. For ARM  processors, this might 
be the QEMU-based simulator in Code-
Sourcery’s Sourcery G++. (QEMU is an 
open-source microprocessor emulator.) 
For MIPS processors, it will probably be 

MIPSsim, from MIPS Technologies. For Power Architecture 
processors, the likely choice will be Virtutech’s Simics.

Running a program in a simulator can take many hours, 
depending on the program’s size, its functions, the simula-
tor’s efficiency, and the speed of the computer on which the 
simulator runs. Simulation generates a prodigious amount 
of trace data that records every function call, memory 
transaction, and other operation the program performs. 
Data about memory references is particularly important, 
because it allows Prism to find the interdependencies that 
prevent some functions from executing in parallel.

Dependencies: The Enemy of Parallelism
Prism can identify all three types of classic data dependen-
cies. O ne is a “true” data dependency, also known as read 
after write (RAW). Another is an antidependency, or write 
after read (WAR). T he third is an output dependency, or 
write after write (WAW). Figure 2 illustrates some examples 
of arithmetic operations that can create these dependencies.

RAW dependencies can’t be fixed, because they occur 
when an operation needs the result of a previous opera-
tion. For instance, a function that calculates the annual 
sales of a company by summing the monthly sales can’t 
proceed until a previous function sums the weekly sales. 
The two operations have a true data dependency, so they 
can’t execute out of order or in parallel. However, it still 
may be possible to improve a program’s overall perfor-
mance by rescheduling some of these RAW dependencies 
around other dependencies.

WAR  antidependencies are relatively easy to fix. T hese 
may occur if the processor runs out of available registers 
to hold a working data set, or if two or more operations 
need to use the same memory, variable, or buffer. A good 
programmer or optimizing compiler can eliminate antide-
pendencies by improving the allocation of these resources.

Figure 1.	 Prism assumes most programmers will implement multithreading with the Posix 
Thread API. Although Prism can suggest places where threading will improve performance, 
it doesn’t automatically generate parallel code or modify existing code. CriticalBlue says early 
customers were adamant about keeping their programs untouched.

Figure 2.	 Prism analyzes dynamic trace information to identify three 
classic types of data dependencies that prevent certain operations 
from executing in parallel.

err = 0;
		 for (r = 0, i = 0; r < mb_rows; ++r) {
			  for (c = 0; c < mb_cols; ++c, ++i) {
				   // pack each macroblock arguments and launch thread
				   mbe_arg_pack(&arg[i], image, r, c, huffman, 0);
				   // each mb created locally
				   pthread_create(&thread[i], NULL, mbe_func, &arg[i]);
		 }
	}
	
	 	// wait for threads to finish
		 for (i = 0; i < mb_rows * mb_cols; ++i) {
			  pthread_join(thread[i], (void *)&status);
			����   ��������������  ������������������   �����if (!err && arg[i].err) err = arg[i].err;
	}
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WAW output dependencies occur when an operation 
needs the result of a previous operation that hasn’t yet 
saved its result in memory. If allowed to proceed, the sec-
ond operation will read obsolete data. Some microproces-
sors have data-forwarding logic that automatically detects 
an instruction-level WAW dependency and forwards 
the pending result to a subsequent operation that needs 
it. L ikewise, some processors with data caches can auto-
matically intercept a read operation and redirect it to the 
pending data held in the cache. T hese techniques enable 
instruction-level parallelism and are usually transparent to 
programmers. To enable thread-level parallelism, however, 
programmers must fix WAW dependencies by rearranging 
some code.

Simply finding and identifying all these data dependen-
cies in existing sequential code is half the battle. They can be 
very subtle. Often they aren’t visible in neighboring lines of 
source code. Different functions scattered widely through-
out a program may have mutual dependencies that aren’t 
immediately apparent. Pointers and other indirect memory 
references can hide these hazards, too. P rism has several 
features that help programmers find, analyze, and fix these 
problems.

Rooting Out Dependencies
Figure 3  is a cropped screen photo of P rism analyzing a 
program that encodes and compresses video streams into 
H.264 format. Prism has found and identified thousands of 

Figure 3.	 Finding data dependencies with Prism. Columns on the left identify the functions, source files, and lines of code in which Prism has found 
data dependencies. Columns on the right identify the types of dependencies (read after write, write after read, or write after write) and the number 
of occurrences that Prism found in the trace data after a simulation run. In this example, the programmer has highlighted a write-after-read (WAR) 
dependency in line 69 of the “h264_parallel.c” source file.

Figure 4.	 Analyzing source code with Prism. When the programmer clicks on a WAR dependency highlighted in Figure 3, Prism automatically loads 
the C source file (“h264_parallel.c”), scrolls the Eclipse text editor to the corresponding function (filter_mb_edgeh_worker), outlines the 
offending line of code (line 69), and indicates that this line is both the source and destination of the dependency. In this example, the function is 
performing two operations on the same variable in the same statement, potentially creating a WAR dependency.
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dependencies in the trace of an H.264 function (filter_mb_
edgeh_worker) that performs edge detection on macro-
blocks (groups of pixels). T his particular function suffers 
from all three types of dependencies. Fixing them won’t 
require a programmer to rewrite thousands of lines of code, 
though. Only a few statements (indicated by their line num-
bers) are responsible, because the program calls this func-
tion often.

When the programmer selects a dependency in the table 
shown in Figure 3, Prism automatically displays the corre-
sponding line of source code in the Eclipse text editor. In a 
narrow column to the left of the source code, Prism indicates 
whether that code is the source, the destination, or both the 
source and destination of the dependency. Figure 4 shows a 
cropped screen photo of the text editor.

Although some tasks in this example program are 
threaded already, they aren’t properly synchronized, so they 
may create data races when executing in parallel—but not 
always. For programmers, this hazard is particularly mad-
dening. A program can run properly on one type of mul-
tiprocessing system (say, a dual-core processor) but fail on 
another (such as a quad-core processor). Simply changing 
the degree of parallelism can alter the thread scheduling 
in ways that cause a function to stall while waiting for the 
results of another function. Sometimes, a program works 
correctly for years before the problem appears. (See MPR 
4/30/07-02, “The Dread of Threads.”)

Prism can reveal these hidden races in a data-flow graph, 
as Figure 5 shows. Red arrows indicate potential data races. 
Ideally, all arrows should point forward (left to right), indi-

cating that data is flowing forward 
in time. Some do, by luck. Under 
different conditions, they might not. 
When an arrow points backward, it 
means one thread needs data that 
isn’t ready in another thread, so the 
first thread will stall.

Programmers can resolve data 
races by synchronizing the threads 
or by forcing dependent functions to 
execute serially. Sometimes it’s a sim-
ple resource-allocation problem. In 
this example, the programmer tried 
to conserve resources by using the 
same memory to temporarily store 
all the macroblocks that the program 
is compressing. O n a single-core 
processor, this approach works fine. 
On a multicore processor, multiple 
threads contend for the same mem-
ory. Figure 6 shows the data-flow 
graph after fixing the problems.

Figure 5.	 A multithreaded data-flow graph in Prism. In this example, four threads are running in parallel on a quad-core processor. Red arrows 
indicate potential data races between threads. Arrows pointing from left to right indicate the correct data flow—forward in time. Arrows pointing 
backward indicate problems—needed data won’t be ready, causing a thread to stall until the data is available.

Figure 6.	 After the programmer forced some data-dependent operations in the edge-detection func-
tion to execute serially, Prism’s data-flow graph shows all data flowing forward in time (red arrows 
pointing from left to right). This modification allows that function to run in parallel with other threads 
calling the same function.
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Testing What-If Scenarios
Sometimes, adding threads or cores won’t accelerate a pro-
gram. There may be too many true data dependencies to take 
advantage of multithreading. O r perhaps the overhead of 
thread management outweighs the gains of executing small 
tasks in parallel. Or maybe the program reaches a point of 
diminishing returns at a particular number of processor 
cores. If the only way to answer these questions is to repeat-
edly modify the program and test it on different hardware 
configurations, the developers will be laboring a long time. 
And what if the hardware design isn’t finished yet?

Figure 7.	 Software developers can quickly add or subtract proces-
sor cores to test a program with different multicore configurations. (If 
only hardware developers had it this easy.)

Figure 8.	 This composite of two cropped screen photos shows the results of forcing a function named get_cabac to run in parallel threads on 
a quad-core processor. In the top analysis, the partially threaded version of get_cabac executes in 47% fewer clock cycles than a sequentially 
coded version. In the bottom analysis, forcing get_cabac to run as a fully independent thread actually worsens performance—it executes in only 
17% fewer clock cycles than sequential code. In this case, dependencies limit the benefits of parallelization.
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Prism can save months of work by making these explora-
tions as easy as testing financial what-if scenarios in a spread-
sheet. As Figure 7 shows, adding more (virtual) processor 
cores requires only a few mouse clicks. CriticalBlue says that 
even a change this significant won’t require developers to 
rerun the simulation. Prism reanalyzes the previously cap-
tured trace data to match the new scenario.

Similarly, developers can predict the results of execut-
ing certain tasks in separate threads—before rewriting any 
code. Using the original trace data, P rism recalculates all 
the thread scheduling and dependencies, then estimates the 

effect on performance. Figure 8 shows the results of forcing 
a function named get_cabac to run in its own thread on 
a quad-core processor. In this example, partially threaded 
code runs faster than unthreaded code and fully threaded 
code, because executing this function in parallel creates new 
dependencies that can’t be resolved.

The ability to test and evaluate different scenarios without 
rewriting a program is huge. Developers can explore numer-
ous possibilities and make intelligent decisions before com-
mitting human resources to refactor the code. Even if Prism 
leads a developer to conclude that an existing program won’t 

benefit from any parallelization 
at all, the time saved is probably 
worth the cost of the tool.

Indeed, P rism has applica-
tions beyond parallel program-
ming. Its thorough analysis is 
useful for understanding the 
mechanics of any program 
and for profiling a program’s 
performance. P rism would be 
valuable for analyzing any large 
program written years ago by 

Figure 9.	 Prism’s hot-spot finder. This screen displays all the functions of a program in a tree hierarchy and shows the number and percentage of 
clock cycles that each function requires during the simulation run.

Figure 10.	Prism’s hot-spot finder (detail). This closeup from Figure 9 reveals that only seven functions, 
though called only once, account for 97.4% of the clock cycles required to encode a video stream in H.264 
format. These functions are obvious candidates for optimization.
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programmers who have long since departed, leaving behind 
legacy code that must be maintained. Figures 9 and 10 show 
Prism’s hot-spot finder, which displays a hierarchical tree 
of program functions and the percentage of execution time 
that each function consumes in simulation.

Figures 11 and 12 show another view of the same pro-
gram. This time, Prism displays a graphical representa-
tion of the functions. A rrows indicate which functions 
are calling other functions. T his view reveals long call 
chains that may be inefficient or create potential schedul-
ing problems for a parallel implementation.

There is a limit to what-if scenarios. When developers 
finally do get around to rewriting code, any changes that 
significantly alter the program’s behavior will naturally 
make the original trace less indicative of the program’s 
new performance. P retty soon, the original trace will 
become obsolete. A t that point, developers must run 
another trace to model the new behavior and use Prism 
to analyze the results again. Trace runs can take a long 
time, especially if they are cycle-accurate instead of 
instruction-accurate. T his iterative process adds more 
time to the usual development cycle of refactoring the 
code, recompiling the code, and testing the code.

Unfortunately, this limitation seems unavoidable. In 
defense, C riticalBlue says that traces can remain useful 
through several recompilation cycles, depending on the 
extent of the code changes. A nd with each retrace, P rism 
performs a fresh analysis, looking for new ways to optimize 
the program.

Figure 11.	Prism’s function-call graph. This scrollable screen displays every function in the program, with arrows connecting functions that called 
other functions during the simulation run. Together with the hot-spot finder shown in Figures 9 and 10, this view is another way of visualizing the 
hierarchical structure of a program.

Figure 12.	Prism’s function-call graph (detail). This closeup from Figure 11 
shows individual functions in green boxes. Arrows indicate function calls. Yel-
low boxes record the number of times the program called a particular function 
during the simulation run.
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CriticalBlue Finds Early Adopters
Although P rism was officially released at the M ulticore 
Expo in M arch, C riticalBlue began delivering early ver-
sions to lead customers in June 2008. Toshiba (an investor 
in CriticalBlue) was the first customer. Toshiba is shipping 
a custom version of Prism (V-Prism) as part of the software 
development kit (SDK) for its Venezia platform. Venezia is 
a homogeneous multicore SoC architecture for embedded 
systems. It’s built around Toshiba’s Media Embedded Pro-
cessor (MeP) cores. (See MPR 6/10/02-02, “New Processors 
for New Media.”)

For other customers, CriticalBlue delivers Prism in a plat-
form support package (PSP) for specific processors. O ne 
form is a C ore P SP, which typically uses an instruction-
accurate simulator to analyze a single program running on 
a single core. It’s intended to help programmers implement 
multithreading across multiple cores.

Another Prism package is a System PSP. It is specific to a 
processor-based platform—such as a multicore chip, a mul-
tiprocessor system board, or a processor family. CriticalBlue 
says a System P SP  models the system architecture more 
closely, includes more system effects in the trace, and pro-
vides more analysis and suggestions specific to the target 
platform.

Currently, Prism can analyze the trace of only one pro-
gram at a time. Other programs can run during the trace, 
and they will affect P rism’s analysis as they compete for 
resources and interact with the traced program. But Prism’s 
detailed trace analysis will be limited to the target program. 

CriticalBlue says a full trace analysis of multiple programs 
running simultaneously is feasible, but it’s not currently in 
development.

A third option for Prism is a Custom PSP. On demand, 
CriticalBlue can support almost any processor or platform, 
as the company has done for Toshiba’s Venezia. In addition, 
developers can use Prism alongside Cascade, CriticalBlue’s 
aforementioned C-to-RTL tool (available separately). With 
both tools, developers can both optimize their software 
and generate hardware coprocessors to accelerate critical 
functions.

At present, CriticalBlue has PSPs for the ARM and MIPS 
architectures, including the ARM C  ortex-A9 MPC ore, 
ARM11 MPCore, MIPS 1004K, and MIPS 74K processors. 
CriticalBlue has demonstrated beta versions of P rism for 
Freescale P ower A rchitecture processors and the R enesas 
SH-Mobile architecture. PSPs for other embedded proces-
sors are in development. Pricing starts at $200 a month for 
a Core PSP.

Just because Prism doesn’t currently support a particular 
processor core or CPU architecture doesn’t mean it is use-
less to other developers. CriticalBlue says some developers 
are using the ARM version of Prism as a general-purpose 
tool for analyzing their program code, even though they 
aren’t targeting ARM . T he analysis is, necessarily, rather 
coarse. But it can lead programmers to a better understand-
ing of their code and help them find opportunities for 
parallelism.

Prism’s Potential Limitations
An optical-glass prism is a wondrous object that reveals the 
hidden color components of white light. Similarly, C rit-
icalBlue’s P rism reveals the hidden aspects of a program. 
Interactions that are unimportant when code executes 
sequentially become very important when the same code 
tries to execute in parallel. Without a tool like Prism, data 
dependencies may remain as invisible as the spectrum of 
colors concealed in white light. So, in many ways, Prism can 
be educational as well as analytical. It’s a valuable learning 
tool for the vast majority of programmers who weren’t for-
mally schooled in parallel programming and who need to 
update their skills.

In practice, some limitations are bound to surface. One 
is that any analysis based on dynamic trace data depends on 
the nature of the trace. The fewer possible paths through a 
program, the better Prism’s analysis is likely to be, because 
there is less data to analyze and fewer execution scenarios. 
When a program has many possible paths of execution, not 
only will a fully explored simulation take more time, but it 
may also exhibit different patterns of dependencies.

As an analogy, consider a GPS trace of an automobile 
journey. There may be numerous possible routes from start 
to finish, each with its own hazards and potential bottle-
necks. To find the best route, a driver may have to explore 
several routes, then do a comparative analysis of the GPS 

P r i c e  &  Av a i l a b i l i t y

CriticalBlue’s Prism code-analysis tool is available 
now for ARM and MIPS embedded-processor cores. 
CriticalBlue has demonstrated beta versions for Fre-
escale’s Power Architecture cores and the Renesas SH-
Mobile architecture.

Prism is available in three forms of platform sup-
port packages (PSP). A Core PSP analyzes dynamic 
trace data for one program running on a single-core 
processor. A System PSP can analyze more system-
level behavior for one program running on a platform, 
which may include a multicore chip. CriticalBlue can 
tailor a Custom PSP for a customer’s requirements. 
Prices start at $200 a month to lease a Core PSP for 
a target processor. Prices for a System PSP or Custom 
PSP are negotiable.

Prism requires a software simulator for the target 
processor. Simulators are available separately from 
processor vendors and third parties.

For more information about Prism, see:
www.criticalblue.com/criticalblue_products/prism.shtml
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data. Although Prism can reanalyze a trace for different sce-
narios, additional simulation runs may still be necessary in 
some circumstances.

A  systemwide analysis of multiple programs running 
simultaneously is even more challenging, especially if the 
programs contend for shared resources. Even the operating 
system becomes a factor. In a shared-memory SMP system, 
the O S and application programs compete for the same 
resources. The number of possible interdependencies rises 
with each additional program, thread, and processor core. 
Even with a tool as powerful as P rism, developers can be 
overwhelmed—especially because Prism currently analyzes 
only one program trace at a time.

Another limitation of P rism is that it can’t be more 
cycle-accurate than the simulator capturing the trace. Some 
dependencies are sensitive to scheduling conflicts that only 
a fully cycle-accurate simulation can expose. Cycle-accurate 
simulators are agonizingly slow, particularly when simu-
lating SMP  on a multicore processor. O n the other hand, 
Prism can perform a great deal of analysis on a cycle-
accurate trace, reducing the need to rerun the trace after 
each recompilation.

We have already mentioned that Prism is currently lim-
ited to only a few CPU architectures—though we agree that 
ARM, MIPS, and the Power Architecture are the best places 
to start. And for now, P rism can’t perform a system-scale 
analysis of a heterogeneous multicore design, which rules 
out many embedded SoCs. But C riticalBlue seems eager 
for a challenge. Prism is very much a work in progress, and 
CriticalBlue says it will entertain almost any proposal from 
an important customer.

After seeing what Prism can do, despite the drawbacks, 
it’s hard to imagine tackling any but the simplest parallel-
programming project without such a tool. N obody said 
software development in the multicore era would be 
painless. 
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