
	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

reportM I C R O P R O C E S S O R
www.MPRonline.com

	 	T h e 	 i n s i d e R ’ s 	 g u i d e 	 T o 	 M i c R o P R o c e s s o R 	 h a R d w a R e 	

GoinG Parallel With Prism
New Analysis Tool Helps Programmers Refactor Serial Code

By Tom R. Halfhi l l {4/27/09-01}

It’ll	be	a	long	time—maybe	forever—before	someone	invents	a	magic	compiler	that	trans-

forms	existing	serial	code	into	optimized	parallel	code.	meanwhile,	hard-pressed	program-

mers	are	tackling	the	job	by	hand.	line	by	line,	they	pore	over	their	programs,	resolving	

data	 dependencies	 and	 rearranging	 functions	 for	 parallel	
execution	 on	 multicore	 processors.	 It’s	 drudge	 work,	 but	
somebody	has	to	do	it.	lots	of	somebodies.

now	 their	 task	 will	 be	 a	 little	 easier.	 criticalBlue	 has	
introduced	prism,	a	code-analysis	tool	that	helps	developers	
extract	thread-level	and	system-level	parallelism	from	legacy	
programs	written	in	sequential	code.	after	running	the	tar-
get	program	in	a	software	simulator	that	captures	dynamic	
trace	data,	developers	can	use	prism	to	analyze	the	results	in	
numerous	ways.	With	raw	statistics,	expandable	tables,	tele-
scoping	charts,	and	data-flow	graphs,	prism	reveals	detailed	
views	of	a	program’s	mechanics.	It	can	identify	data	depen-
dencies	 that	 thwart	 parallelism,	 suggest	 modifications	 to	
source	code,	and	estimate	performance	improvements.

most	 important,	 prism	 helps	 developers	 explore	 vari-
ous	what-if	scenarios	so	they	can	make	intelligent	decisions	
before	rewriting	any	code.	Will	modifying	two	or	more	func-
tions	to	eliminate	their	interdependencies	actually	increase	
throughput?	Will	rewriting	a	different	function	yield	a	big-
ger	 payoff?	 Will	 a	 single-threaded	 program	 run	 twice	 as	
fast	on	a	dual-core	processor?	Will	 the	same	program	run	
four	times	faster	on	a	quad-core	processor?	When	does	the	
overhead	of	creating	and	terminating	threads	outweigh	the	
gains	 of	 greater	 parallelism?	 Without	 this	 foreknowledge,	
programmers	can	waste	months	on	dead-end	experiments.

prism	is	a	new	direction	for	criticalBlue,	though	it	builds	
on	 the	 Scottish	 company’s	 expertise.	 Until	 now,	 critical-
Blue’s	 flagship	 product	 was	 cascade,	 a	 design-automation	

tool.	cascade	 helps	 developers	 convert	high-level	 software	
functions	written	in	c	or	c++	into	the	rtl	required	to	cre-
ate	hardware	coprocessors.	prism	is	strictly	a	code-analysis	
tool,	 not	 a	 hardware-generation	 tool,	 but	 the	 experience	
gained	from	analyzing	dynamic	traces	of	program	execution	
for	cascade	is	the	foundation	for	prism.	although	cascade	
remains	 a	 live	 product,	 the	 rise	 of	 multicore	 processors	 is	
creating	demand	for	new	parallel-programming	solutions.

like	 cascade,	 prism	 is	 for	 embedded-system	 developers,	
not	programmers	writing	software	for	pcs	and	servers.	It	cur-
rently	supports	arm	and	mIpS	processors	intended	for	mul-
ticore	Socs,	but	not	arc,	x86,	Sparc,	or	tensilica	processors.	
nor	does	prism	support	GpUs,	an	increasingly	popular	alter-
native	for	parallel	processing.	Versions	for	the	power	architec-
ture	and	renesas	SH-mobile	architecture	are	in	development.	
criticalBlue	 says	 additional	 cpU	 architectures	 are	 relatively	
easy	to	support	and	will	depend	on	customer	demand.

prism	requires	a	separate	simulator	to	gather	the	dynamic	
trace	 data,	 and	 it’s	 limited	 to	 symmetric	 multiprocessing	
(Smp)	 on	 shared-memory	 systems.	 currently,	 it	 doesn’t	
support	 asymmetric	 multiprocessing	 (amp)—a	 common	
system	architecture	in	embedded	systems	using	two	or	more	
processors.	 criticalBlue	 says	 most	 customers	 wanted	 Smp	
support	first.

Compatibility With Existing Tools
criticalBlue	delivers	prism	as	a	plug-in	module	for	the	eclipse	
Integrated	Development	environment	(IDe),	an	open-source	

2 going	Parallel	with	Prism

	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

framework	rapidly	gaining	popularity	among	programmers.	
eclipse	isn’t	specific	to	any	particular	cpU	architecture,	oper-
ating	system,	or	programming	language.	By	delivering	prism	
as	 an	 eclipse	 plug-in,	 criticalBlue	 avoids	 the	 considerable	
effort	 required	 to	 develop	 a	 proprietary	 IDe	 and	 convince	
programmers	that	it’s	better	than	existing	tools.

nor	has	criticalBlue	reinvented	the	wheels	of	compilers	
or	parallel	 programming.	prism	works	 with	any	 compiler	
and	assumes	the	legacy	code	was	written	in	anSI-compliant	
c,	 c++,	 or	 assembly	 language.	 currently,	 prism	 assumes	
most	 programmers	 will	 implement	 thread-level	 parallel-
ism	using	the	posix	threads	library.	posix	“pthreads”	are	a	
platform-agnostic	 way	 to	 implement	 multithreading	 in	 c	
and	c++	(see	Figure	1).	For	toshiba,	a	lead	customer,	prism	
also	supports	the	Venezia	“V-thread”	apI.	criticalBlue	says	
prism	could	support	virtually	any	threading	library,	if	cus-
tomer	 demand	 warrants	 it.	 although	 programmers	 who	
aren’t	using	eclipse	and	pthreads	may	still	find	prism	useful	
as	a	code-analysis	tool,	it	works	best	for	programmers	who	
are	coding	in	c,	with	eclipse	as	their	front-end	IDe.

Using	prism	is	a	 five-step	process.	First,	prism	analyzes	
the	dynamic	trace	data	gathered	by	running	the	target	pro-
gram	 in	 a	 software	 simulator.	 next,	 before	 rewriting	 any-
thing,	programmers	 study	 the	 results	 and	explore	various	

alternatives	for	parallelizing	the	code.	the	
third	step	is	to	choose	the	best	alternatives	
(whatever	 the	developer’s	priorities)	and	
write	 the	 necessary	 code,	 starting	 with	
prism’s	 suggestions.	 next,	 prism	 checks	
for	 problems	 that	 could	 interfere	 with	
proper	 execution	 and	 optimum	 perfor-
mance.	 Finally,	 programmers	 can	 repeat	
the	 process	 to	 make	 additional	 perfor-
mance	improvements.

as	 mentioned	 above,	 prism	 doesn’t	
include	 a	 software	 simulator.	 Instead	 of	
reinventing	 that	 wheel,	 too,	 criticalBlue	
assumes	each	developer	will	use	a	 simu-
lator	already	available	for	the	target	plat-
form.	 For	 arm	 processors,	 this	 might	
be	 the	QemU-based	 simulator	 in	code-
Sourcery’s	 Sourcery	 G++.	 (QemU	 is	 an	
open-source	 microprocessor	 emulator.)	
For	mIpS	processors,	 it	will	probably	be	

mIpSsim,	from	mIpS	technologies.	For	power	architecture	
processors,	the	likely	choice	will	be	Virtutech’s	Simics.

running	a	program	in	a	simulator	can	take	many	hours,	
depending	on	the	program’s	size,	its	functions,	the	simula-
tor’s	efficiency,	and	the	speed	of	the	computer	on	which	the	
simulator	runs.	Simulation	generates	a	prodigious	amount	
of	 trace	 data	 that	 records	 every	 function	 call,	 memory	
transaction,	 and	 other	 operation	 the	 program	 performs.	
Data	 about	 memory	 references	 is	 particularly	 important,	
because	it	allows	prism	to	find	the	interdependencies	that	
prevent	some	functions	from	executing	in	parallel.

Dependencies: The Enemy of Parallelism
prism	can	identify	all	three	types	of	classic	data	dependen-
cies.	 one	 is	 a	“true”	 data	 dependency,	 also	 known	 as	 read	
after	write	(raW).	another	is	an	antidependency,	or	write	
after	 read	 (War).	 the	 third	 is	 an	 output	 dependency,	 or	
write	after	write	(WaW).	Figure	2	illustrates	some	examples	
of	arithmetic	operations	that	can	create	these	dependencies.

raW	 dependencies	 can’t	 be	 fixed,	 because	 they	 occur	
when	 an	 operation	 needs	 the	 result	 of	 a	 previous	 opera-
tion.	 For	 instance,	 a	 function	 that	 calculates	 the	 annual	
sales	 of	 a	 company	 by	 summing	 the	 monthly	 sales	 can’t	
proceed	 until	 a	 previous	 function	 sums	 the	 weekly	 sales.	
the	two	operations	have	a	true	data	dependency,	so	they	
can’t	 execute	 out	 of	 order	 or	 in	 parallel.	 However,	 it	 still	
may	 be	 possible	 to	 improve	 a	 program’s	 overall	 perfor-
mance	by	rescheduling	some	of	these	raW	dependencies	
around	other	dependencies.

War	 antidependencies	 are	 relatively	 easy	 to	 fix.	 these	
may	 occur	 if	 the	 processor	 runs	 out	 of	 available	 registers	
to	 hold	 a	 working	 data	 set,	 or	 if	 two	 or	 more	 operations	
need	to	use	the	same	memory,	variable,	or	buffer.	a	good	
programmer	or	optimizing	compiler	can	eliminate	antide-
pendencies	by	improving	the	allocation	of	these	resources.

Figure 1.	 Prism	 assumes	 most	 programmers	 will	 implement	 multithreading	 with	 the	 Posix	
Thread	 API.	 Although	 Prism	 can	 suggest	 places	 where	 threading	 will	 improve	 performance,	
it	doesn’t	automatically	generate	parallel	code	or	modify	existing	code.	CriticalBlue	says	early	
customers	were	adamant	about	keeping	their	programs	untouched.

Figure 2.	 Prism	analyzes	dynamic	trace	information	to	identify	three	
classic	 types	 of	 data	 dependencies	 that	 prevent	 certain	 operations	
from	executing	in	parallel.

err = 0;
 for (r = 0, i = 0; r < mb_rows; ++r) {
 for (c = 0; c < mb_cols; ++c, ++i) {
 // pack each macroblock arguments and launch thread
 mbe_arg_pack(&arg[i], image, r, c, huffman, 0);
 // each mb created locally
 pthread_create(&thread[i], NULL, mbe_func, &arg[i]);
 }
 }

	 	//	wait	for	threads	to	finish
 for (i = 0; i < mb_rows * mb_cols; ++i) {
 pthread_join(thread[i], (void *)&status);
 if (�err && arg[i]�err) err = arg[i]�err;if (�err && arg[i]�err) err = arg[i]�err;
 }

�going	Parallel	with	Prism

	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

WaW	 output	 dependencies	 occur	 when	 an	 operation	
needs	 the	 result	 of	 a	 previous	 operation	 that	 hasn’t	 yet	
saved	its	result	in	memory.	If	allowed	to	proceed,	the	sec-
ond	operation	will	read	obsolete	data.	Some	microproces-
sors	have	data-forwarding	logic	that	automatically	detects	
an	 instruction-level	 WaW	 dependency	 and	 forwards	
the	 pending	 result	 to	 a	 subsequent	 operation	 that	 needs	
it.	 likewise,	 some	 processors	 with	 data	 caches	 can	 auto-
matically	intercept	a	read	operation	and	redirect	it	to	the	
pending	 data	 held	 in	 the	 cache.	 these	 techniques	 enable	
instruction-level	parallelism	and	are	usually	transparent	to	
programmers.	to	enable	thread-level	parallelism,	however,	
programmers	must	fix	WaW	dependencies	by	rearranging	
some	code.

Simply	finding	and	identifying	all	these	data	dependen-
cies	in	existing	sequential	code	is	half	the	battle.	they	can	be	
very	subtle.	often	they	aren’t	visible	in	neighboring	lines	of	
source	code.	Different	 functions	scattered	widely	through-
out	 a	 program	 may	 have	 mutual	 dependencies	 that	 aren’t	
immediately	apparent.	pointers	and	other	indirect	memory	
references	 can	 hide	 these	 hazards,	 too.	 prism	 has	 several	
features	that	help	programmers	find,	analyze,	and	fix	these	
problems.

Rooting Out Dependencies
Figure	 �	 is	 a	 cropped	 screen	 photo	 of	 prism	 analyzing	 a	
program	 that	 encodes	 and	 compresses	 video	 streams	 into	
H.264	format.	prism	has	found	and	identified	thousands	of	

Figure 3.	 Finding	data	dependencies	with	Prism.	Columns	on	the	left	identify	the	functions,	source	files,	and	lines	of	code	in	which	Prism	has	found	
data	dependencies.	Columns	on	the	right	identify	the	types	of	dependencies	(read	after	write,	write	after	read,	or	write	after	write)	and	the	number	
of	occurrences	that	Prism	found	in	the	trace	data	after	a	simulation	run.	In	this	example,	the	programmer	has	highlighted	a	write-after-read	(WAR)	
dependency	in	line	69	of	the	“h264_parallel.c”	source	file.

Figure 4.	 Analyzing	source	code	with	Prism.	When	the	programmer	clicks	on	a	WAR	dependency	highlighted	in	Figure	3,	Prism	automatically	loads	
the	C	source	 file	 (“h264_parallel.c”),	 scrolls	 the	Eclipse	 text	editor	 to	 the	corresponding	function	(filter_mb_edgeh_worker),	outlines	 the	
offending	line	of	code	(line	69),	and	indicates	that	this	line	is	both	the	source	and	destination	of	the	dependency.	In	this	example,	the	function	is	
performing	two	operations	on	the	same	variable	in	the	same	statement,	potentially	creating	a	WAR	dependency.

4 going	Parallel	with	Prism

	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

dependencies	in	the	trace	of	an	H.264	function	(filter_mb_
edgeh_worker)	 that	 performs	 edge	 detection	 on	 macro-
blocks	 (groups	 of	 pixels).	 this	 particular	 function	 suffers	
from	 all	 three	 types	 of	 dependencies.	 Fixing	 them	 won’t	
require	a	programmer	to	rewrite	thousands	of	lines	of	code,	
though.	only	a	few	statements	(indicated	by	their	line	num-
bers)	are	responsible,	because	 the	program	calls	 this	 func-
tion	often.

When	the	programmer	selects	a	dependency	in	the	table	
shown	in	Figure	�,	prism	automatically	displays	the	corre-
sponding	line	of	source	code	in	the	eclipse	text	editor.	In	a	
narrow	column	to	the	left	of	the	source	code,	prism	indicates	
whether	that	code	is	the	source,	the	destination,	or	both	the	
source	and	destination	of	the	dependency.	Figure	4	shows	a	
cropped	screen	photo	of	the	text	editor.

although	 some	 tasks	 in	 this	 example	 program	 are	
threaded	already,	they	aren’t	properly	synchronized,	so	they	
may	create	data	races	when	executing	 in	parallel—but	not	
always.	For	programmers,	 this	hazard	 is	particularly	mad-
dening.	a	program	can	run	properly	on	one	 type	of	mul-
tiprocessing	system	(say,	a	dual-core	processor)	but	fail	on	
another	(such	as	a	quad-core	processor).	Simply	changing	
the	 degree	 of	 parallelism	 can	 alter	 the	 thread	 scheduling	
in	ways	that	cause	a	function	to	stall	while	waiting	for	the	
results	 of	 another	 function.	 Sometimes,	 a	 program	 works	
correctly	 for	 years	 before	 the	 problem	 appears.	 (See	 MPR
4/30/07-02,	“the	Dread	of	threads.”)

prism	can	reveal	these	hidden	races	in	a	data-flow	graph,	
as	Figure	5	shows.	red	arrows	indicate	potential	data	races.	
Ideally,	all	arrows	should	point	forward	(left	to	right),	indi-

cating	 that	 data	 is	 flowing	 forward	
in	 time.	 Some	 do,	 by	 luck.	 Under	
different	conditions,	they	might	not.	
When	an	arrow	points	backward,	it	
means	 one	 thread	 needs	 data	 that	
isn’t	ready	in	another	thread,	so	the	
first	thread	will	stall.

programmers	 can	 resolve	 data	
races	 by	 synchronizing	 the	 threads	
or	by	forcing	dependent	functions	to	
execute	serially.	Sometimes	it’s	a	sim-
ple	 resource-allocation	 problem.	 In	
this	example,	 the	programmer	tried	
to	 conserve	 resources	 by	 using	 the	
same	 memory	 to	 temporarily	 store	
all	the	macroblocks	that	the	program	
is	 compressing.	 on	 a	 single-core	
processor,	 this	approach	works	 fine.	
on	 a	 multicore	 processor,	 multiple	
threads	contend	for	the	same	mem-
ory.	 Figure	 6	 shows	 the	 data-flow	
graph	after	fixing	the	problems.

Figure 5.	 A	multithreaded	data-flow	graph	in	Prism.	In	this	example,	four	threads	are	running	 in	parallel	on	a	quad-core	processor.	Red	arrows	
indicate	potential	data	races	between	threads.	Arrows	pointing	from	left	to	right	indicate	the	correct	data	flow—forward	in	time.	Arrows	pointing	
backward	indicate	problems—needed	data	won’t	be	ready,	causing	a	thread	to	stall	until	the	data	is	available.

Figure 6.	 After	the	programmer	forced	some	data-dependent	operations	in	the	edge-detection	func-
tion	to	execute	serially,	Prism’s	data-flow	graph	shows	all	data	 flowing	forward	 in	 time	(red	arrows	
pointing	from	left	to	right).	This	modification	allows	that	function	to	run	in	parallel	with	other	threads	
calling	the	same	function.

5going	Parallel	with	Prism

	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

Testing What-If Scenarios
Sometimes,	adding	threads	or	cores	won’t	accelerate	a	pro-
gram.	there	may	be	too	many	true	data	dependencies	to	take	
advantage	 of	 multithreading.	 or	 perhaps	 the	 overhead	 of	
thread	management	outweighs	the	gains	of	executing	small	
tasks	in	parallel.	or	maybe	the	program	reaches	a	point	of	
diminishing	 returns	 at	 a	 particular	 number	 of	 processor	
cores.	If	the	only	way	to	answer	these	questions	is	to	repeat-
edly	modify	the	program	and	test	 it	on	different	hardware	
configurations,	the	developers	will	be	laboring	a	long	time.	
and	what	if	the	hardware	design	isn’t	finished	yet?

Figure 7.	 Software	 developers	 can	 quickly	 add	 or	 subtract	 proces-
sor	cores	to	test	a	program	with	different	multicore	configurations.	(If	
only	hardware	developers	had	it	this	easy.)

Figure 8. This	composite	of	two	cropped	screen	photos	shows	the	results	of	forcing	a	function	named	get_cabac	to	run	in	parallel	threads	on	
a	quad-core	processor.	In	the	top	analysis,	the	partially	threaded	version	of	get_cabac	executes	in	47%	fewer	clock	cycles	than	a	sequentially	
coded	version.	In	the	bottom	analysis,	forcing	get_cabac	to	run	as	a	fully	independent	thread	actually	worsens	performance—it	executes	in	only	
17%	fewer	clock	cycles	than	sequential	code.	In	this	case,	dependencies	limit	the	benefits	of	parallelization.

6 going	Parallel	with	Prism

	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

prism	can	save	months	of	work	by	making	these	explora-
tions	as	easy	as	testing	financial	what-if	scenarios	in	a	spread-
sheet.	as	 Figure	 7	 shows,	 adding	 more	 (virtual)	 processor	
cores	requires	only	a	few	mouse	clicks.	criticalBlue	says	that	
even	 a	 change	 this	 significant	 won’t	 require	 developers	 to	
rerun	the	simulation.	prism	reanalyzes	the	previously	cap-
tured	trace	data	to	match	the	new	scenario.

Similarly,	 developers	 can	 predict	 the	 results	 of	 execut-
ing	certain	tasks	in	separate	threads—before	rewriting	any	
code.	 Using	 the	 original	 trace	 data,	 prism	 recalculates	 all	
the	thread	scheduling	and	dependencies,	then	estimates	the	

effect	on	performance.	Figure	8	shows	the	results	of	forcing	
a	function	named	get_cabac	to	run	in	its	own	thread	on	
a	 quad-core	 processor.	 In	 this	 example,	 partially	 threaded	
code	 runs	 faster	 than	 unthreaded	 code	 and	 fully	 threaded	
code,	because	executing	this	function	in	parallel	creates	new	
dependencies	that	can’t	be	resolved.

the	ability	to	test	and	evaluate	different	scenarios	without	
rewriting	a	program	is	huge.	Developers	can	explore	numer-
ous	possibilities	and	make	intelligent	decisions	before	com-
mitting	human	resources	to	refactor	the	code.	even	if	prism	
leads	a	developer	to	conclude	that	an	existing	program	won’t	

benefit	from	any	parallelization	
at	all,	the	time	saved	is	probably	
worth	the	cost	of	the	tool.

Indeed,	 prism	 has	 applica-
tions	beyond	parallel	program-
ming.	 Its	 thorough	 analysis	 is	
useful	 for	 understanding	 the	
mechanics	 of	 any	 program	
and	 for	 profiling	 a	 program’s	
performance.	 prism	 would	 be	
valuable	for	analyzing	any	large	
program	 written	 years	 ago	 by	

Figure 9. Prism’s	hot-spot	finder.	This	screen	displays	all	the	functions	of	a	program	in	a	tree	hierarchy	and	shows	the	number	and	percentage	of	
clock	cycles	that	each	function	requires	during	the	simulation	run.

Figure 10.	Prism’s	 hot-spot	 finder	 (detail).	 This	 closeup	 from	 Figure	 9	 reveals	 that	 only	 seven	 functions,	
though	called	only	once,	account	for	97.4%	of	the	clock	cycles	required	to	encode	a	video	stream	in	H.264	
format.	These	functions	are	obvious	candidates	for	optimization.

7going	Parallel	with	Prism

	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

	programmers	who	have	long	since	departed,	leaving	behind	
legacy	code	that	must	be	maintained.	Figures	9	and	10	show	
prism’s	 hot-spot	 finder,	 which	 displays	 a	 hierarchical	 tree	
of	program	functions	and	the	percentage	of	execution	time	
that	each	function	consumes	in	simulation.

Figures	11	 and	12	 show	 another	view	 of	 the	 same	 pro-
gram.	this	 time,	prism	displays	a	graphical	 representa-
tion	 of	 the	 functions.	 arrows	 indicate	 which	 functions	
are	 calling	 other	 functions.	 this	 view	 reveals	 long	 call	
chains	that	may	be	inefficient	or	create	potential	schedul-
ing	problems	for	a	parallel	implementation.

there	is	a	limit	to	what-if	scenarios.	When	developers	
finally	do	get	around	to	rewriting	code,	any	changes	that	
significantly	 alter	 the	 program’s	 behavior	 will	 naturally	
make	 the	 original	 trace	 less	 indicative	 of	 the	 program’s	
new	 performance.	 pretty	 soon,	 the	 original	 trace	 will	
become	 obsolete.	 at	 that	 point,	 developers	 must	 run	
another	trace	to	model	the	new	behavior	and	use	prism	
to	analyze	the	results	again.	trace	runs	can	take	a	 long	
time,	 especially	 if	 they	 are	 cycle-accurate	 instead	 of	
instruction-accurate.	 this	 iterative	 process	 adds	 more	
time	 to	 the	usual	development	cycle	of	 refactoring	 the	
code,	recompiling	the	code,	and	testing	the	code.

Unfortunately,	 this	 limitation	 seems	 unavoidable.	 In	
defense,	 criticalBlue	 says	 that	 traces	 can	 remain	 useful	
through	 several	 recompilation	 cycles,	 depending	 on	 the	
extent	 of	 the	 code	 changes.	 and	 with	 each	 retrace,	 prism	
performs	a	fresh	analysis,	looking	for	new	ways	to	optimize	
the	program.

Figure 11.	Prism’s	function-call	graph.	This	scrollable	screen	displays	every	function	in	the	program,	with	arrows	connecting	functions	that	called	
other	functions	during	the	simulation	run.	Together	with	the	hot-spot	finder	shown	in	Figures	9	and	10,	this	view	is	another	way	of	visualizing	the	
hierarchical	structure	of	a	program.

Figure 12. Prism’s	 function-call	 graph	 (detail).	 This	 closeup	 from	 Figure	 11	
shows	individual	functions	in	green	boxes.	Arrows	indicate	function	calls.	Yel-
low	boxes	record	the	number	of	times	the	program	called	a	particular	function	
during	the	simulation	run.

8 going	Parallel	with	Prism

	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

CriticalBlue Finds Early Adopters
although	 prism	 was	 officially	 released	 at	 the	 multicore	
expo	 in	 march,	 criticalBlue	 began	 delivering	 early	 ver-
sions	to	lead	customers	in	June	2008.	toshiba	(an	investor	
in	criticalBlue)	was	the	first	customer.	toshiba	is	shipping	
a	custom	version	of	prism	(V-prism)	as	part	of	the	software	
development	kit	(SDK)	for	its	Venezia	platform.	Venezia	is	
a	homogeneous	multicore	Soc	architecture	 for	 embedded	
systems.	 It’s	built	 around	toshiba’s	media	embedded	pro-
cessor	(mep)	cores.	(See	MPR 6/10/02-02,	“new	processors	
for	new	media.”)

For	other	customers,	criticalBlue	delivers	prism	in	a	plat-
form	 support	 package	 (pSp)	 for	 specific	 processors.	 one	
form	 is	 a	 core	 pSp,	 which	 typically	 uses	 an	 instruction-
accurate	simulator	 to	analyze	a	single	program	running	on	
a	single	core.	It’s	intended	to	help	programmers	implement	
multithreading	across	multiple	cores.

another	prism	package	is	a	System	pSp.	It	is	specific	to	a	
processor-based	platform—such	as	a	multicore	chip,	a	mul-
tiprocessor	system	board,	or	a	processor	family.	criticalBlue	
says	 a	 System	 pSp	 models	 the	 system	 architecture	 more	
closely,	 includes	more	system	effects	 in	the	trace,	and	pro-
vides	 more	 analysis	 and	 suggestions	 specific	 to	 the	 target	
platform.

currently,	prism	can	analyze	 the	 trace	of	only	one	pro-
gram	at	a	 time.	other	programs	can	run	during	the	 trace,	
and	 they	 will	 affect	 prism’s	 analysis	 as	 they	 compete	 for	
resources	and	interact	with	the	traced	program.	But	prism’s	
detailed	trace	analysis	will	be	limited	to	the	target	program.	

criticalBlue	says	a	 full	 trace	analysis	of	multiple	programs	
running	simultaneously	is	feasible,	but	it’s	not	currently	in	
development.

a	third	option	for	prism	is	a	custom	pSp.	on	demand,	
criticalBlue	can	support	almost	any	processor	or	platform,	
as	the	company	has	done	for	toshiba’s	Venezia.	In	addition,	
developers	can	use	prism	alongside	cascade,	criticalBlue’s	
aforementioned	c-to-rtl	tool	(available	separately).	With	
both	 tools,	 developers	 can	 both	 optimize	 their	 software	
and	 generate	 hardware	 coprocessors	 to	 accelerate	 critical	
functions.

at	present,	criticalBlue	has	pSps	for	the	arm	and	mIpS	
architectures,	 including	 the	 arm	 cortex-a9	 mpcore,	
arm11	mpcore,	mIpS	1004K,	and	mIpS	74K	processors.	
criticalBlue	 has	 demonstrated	 beta	 versions	 of	 prism	 for	
Freescale	 power	 architecture	 processors	 and	 the	 renesas	
SH-mobile	architecture.	pSps	 for	other	embedded	proces-
sors	are	in	development.	pricing	starts	at	$200	a	month	for	
a	core	pSp.

Just	because	prism	doesn’t	currently	support	a	particular	
processor	core	or	cpU	architecture	doesn’t	mean	it	is	use-
less	to	other	developers.	criticalBlue	says	some	developers	
are	using	the	arm	version	of	prism	as	a	general-purpose	
tool	 for	 analyzing	 their	 program	 code,	 even	 though	 they	
aren’t	 targeting	 arm.	 the	 analysis	 is,	 necessarily,	 rather	
coarse.	But	it	can	lead	programmers	to	a	better	understand-
ing	 of	 their	 code	 and	 help	 them	 find	 opportunities	 for	
	parallelism.

Prism’s Potential Limitations
an	optical-glass	prism	is	a	wondrous	object	that	reveals	the	
hidden	 color	 components	 of	 white	 light.	 Similarly,	 crit-
icalBlue’s	 prism	 reveals	 the	 hidden	 aspects	 of	 a	 program.	
Interactions	 that	 are	 unimportant	 when	 code	 executes	
	sequentially	 become	 very	 important	 when	 the	 same	 code	
tries	 to	execute	 in	parallel.	Without	a	 tool	 like	prism,	data	
dependencies	 may	 remain	 as	 invisible	 as	 the	 spectrum	 of	
colors	concealed	in	white	light.	So,	in	many	ways,	prism	can	
be	educational	as	well	as	analytical.	It’s	a	valuable	learning	
tool	for	the	vast	majority	of	programmers	who	weren’t	for-
mally	 schooled	 in	parallel	programming	and	who	need	 to	
update	their	skills.

In	practice,	some	limitations	are	bound	to	surface.	one	
is	that	any	analysis	based	on	dynamic	trace	data	depends	on	
the	nature	of	the	trace.	the	fewer	possible	paths	through	a	
program,	the	better	prism’s	analysis	is	likely	to	be,	because	
there	 is	 less	data	to	analyze	and	fewer	execution	scenarios.	
When	a	program	has	many	possible	paths	of	execution,	not	
only	will	a	fully	explored	simulation	take	more	time,	but	it	
may	also	exhibit	different	patterns	of	dependencies.

as	 an	 analogy,	 consider	 a	 GpS	 trace	 of	 an	 automobile	
journey.	there	may	be	numerous	possible	routes	from	start	
to	 finish,	 each	 with	 its	 own	 hazards	 and	 potential	 bottle-
necks.	to	find	the	best	route,	a	driver	may	have	to	explore	
several	 routes,	 then	 do	 a	 comparative	 analysis	 of	 the	 GpS	

P r i c e & Av a i l a b i l i t y

CriticalBlue’s	 Prism	 code-analysis	 tool	 is	 available	
now	for	ARM	and	MIPS	embedded-processor	cores.	
CriticalBlue	has	demonstrated	beta	 versions	 for	 Fre-
escale’s	Power	Architecture	cores	and	the	Renesas	SH-
Mobile	architecture.

Prism	 is	available	 in	 three	 forms	of	platform	sup-
port	 packages	 (PSP).	 A	 Core	 PSP	 analyzes	 dynamic	
trace	data	for	one	program	running	on	a	single-core	
processor.	 A	 System	 PSP	 can	 analyze	 more	 system-
level	behavior	for	one	program	running	on	a	platform,	
which	may	 include	a	multicore	chip.	CriticalBlue	can	
tailor	 a	 Custom	 PSP	 for	 a	 customer’s	 requirements.	
Prices	start	at	$200	a	month	to	lease	a	Core	PSP	for	
a	target	processor.	Prices	for	a	System	PSP	or	Custom	
PSP	are	negotiable.

Prism	requires	a	software	simulator	 for	 the	 target	
processor.	 Simulators	 are	 available	 separately	 from	
processor	vendors	and	third	parties.

For	more	information	about	Prism,	see:
www.criticalblue.com/criticalblue_products/prism.shtml

9going	Parallel	with	Prism

	 © 	 I n - S t a t 	 a p r I l 	 2 7 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

data.	although	prism	can	reanalyze	a	trace	for	different	sce-
narios,	additional	simulation	runs	may	still	be	necessary	in	
some	circumstances.

a	 systemwide	 analysis	 of	 multiple	 programs	 running	
simultaneously	 is	 even	 more	 challenging,	 especially	 if	 the	
programs	contend	for	shared	resources.	even	the	operating	
system	becomes	a	factor.	In	a	shared-memory	Smp	system,	
the	 oS	 and	 application	 programs	 compete	 for	 the	 same	
resources.	the	number	of	possible	 interdependencies	 rises	
with	each	additional	program,	 thread,	 and	processor	core.	
even	 with	 a	 tool	 as	 powerful	 as	 prism,	 developers	 can	 be	
overwhelmed—especially	because	prism	currently	analyzes	
only	one	program	trace	at	a	time.

another	 limitation	 of	 prism	 is	 that	 it	 can’t	 be	 more	
cycle-accurate	than	the	simulator	capturing	the	trace.	Some	
dependencies	are	sensitive	to	scheduling	conflicts	that	only	
a	fully	cycle-accurate	simulation	can	expose.	cycle-accurate	
simulators	 are	 agonizingly	 slow,	 particularly	 when	 simu-
lating	 Smp	 on	 a	 multicore	 processor.	 on	 the	 other	 hand,	
prism	 can	 perform	 a	 great	 deal	 of	 analysis	 on	 a	 cycle-
	accurate	 trace,	 reducing	 the	 need	 to	 rerun	 the	 trace	 after	
each	recompilation.

We	have	already	mentioned	that	prism	is	currently	lim-
ited	to	only	a	few	cpU	architectures—though	we	agree	that	
arm,	mIpS,	and	the	power	architecture	are	the	best	places	
to	 start.	and	 for	 now,	 prism	 can’t	 perform	 a	 system-scale	
analysis	 of	 a	 heterogeneous	 multicore	 design,	 which	 rules	
out	 many	 embedded	 Socs.	 But	 criticalBlue	 seems	 eager	
for	a	challenge.	prism	is	very	much	a	work	in	progress,	and	
criticalBlue	says	it	will	entertain	almost	any	proposal	from	
an	important	customer.

after	seeing	what	prism	can	do,	despite	the	drawbacks,	
it’s	hard	to	imagine	tackling	any	but	the	simplest	parallel-
	programming	 project	 without	 such	 a	 tool.	 nobody	 said	
software	 development	 in	 the	 multicore	 era	 would	 be	
	painless.	

F o r M o r e I n f o r m a t i o n

For	related	information	about	multicore	processors	
and	 software-development	 tools,	 see	 the	 following	
Microprocessor Report	articles:
MPR 12/22/08-01,	“AMD’s	Stream	Becomes	a	River”
MPR 7/28/08-01,	 “EEMBC’s	MultiBench	Arrives”
MPR 7/28/08-02,	 “	Editorial:	Tools	for	Multicore	

	Processors”
MPR 4/28/08-01,	 “	Multicore	Multithreading	With	

MIPS”
MPR 3/31/08-01,	 “Editorial:	Think	Parallel”
MPR 1/28/08-01,	 “Parallel	Processing	With	CUDA”
MPR 12/31/07-02,	“Editorial:	The	Future	of	Multicore																
																																						Processors”
MPR 11/26/07-01,	“Parallel	Processing	For	the	x86”
MPR 8/13/07-01,	 “Fujitsu	Calls	Asynchronously”
MPR 6/4/07-01,	 “MIPS	74K	Performance	Update”
MPR 5/29/07-01,	 “MIPS	74K	Goes	Superscalar”
MPR 4/30/07-02,	 “Editorial:	The	Dread	of	Threads”
MPR 10/2/06-01,	 “Number	Crunching	With	GPUs”
MPR 5/24/04-01,	 “ARM	Opens	Up	to	SMP”

To subscribe to microprocessor	report, phone 480.483.4441 or visit www.mpronline.com

