
	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

reportM I C R O P R O C E S S O R
www.MPRonline.com

	 	T h e i n s i d e r ’ s g u i d e t o m i c r o pr o c e s s o r h a r d w a r e 	

Going Parallel With Prism
New Analysis Tool Helps Programmers Refactor Serial Code

By Tom R. Halfhi l l {4/27/09-01}

It’ll be a long time—maybe forever—before someone invents a magic compiler that trans-

forms existing serial code into optimized parallel code. Meanwhile, hard-pressed program-

mers are tackling the job by hand. Line by line, they pore over their programs, resolving

data dependencies and rearranging functions for parallel
execution on multicore processors. It’s drudge work, but
somebody has to do it. Lots of somebodies.

Now their task will be a little easier. C riticalBlue has
introduced Prism, a code-analysis tool that helps developers
extract thread-level and system-level parallelism from legacy
programs written in sequential code. After running the tar-
get program in a software simulator that captures dynamic
trace data, developers can use Prism to analyze the results in
numerous ways. With raw statistics, expandable tables, tele-
scoping charts, and data-flow graphs, Prism reveals detailed
views of a program’s mechanics. It can identify data depen-
dencies that thwart parallelism, suggest modifications to
source code, and estimate performance improvements.

Most important, P rism helps developers explore vari-
ous what-if scenarios so they can make intelligent decisions
before rewriting any code. Will modifying two or more func-
tions to eliminate their interdependencies actually increase
throughput? Will rewriting a different function yield a big-
ger payoff? Will a single-threaded program run twice as
fast on a dual-core processor? Will the same program run
four times faster on a quad-core processor? When does the
overhead of creating and terminating threads outweigh the
gains of greater parallelism? Without this foreknowledge,
programmers can waste months on dead-end experiments.

Prism is a new direction for CriticalBlue, though it builds
on the Scottish company’s expertise. Until now, C ritical-
Blue’s flagship product was C ascade, a design-automation

tool. Cascade helps developers convert high-level software
functions written in C or C++ into the RTL required to cre-
ate hardware coprocessors. Prism is strictly a code-analysis
tool, not a hardware-generation tool, but the experience
gained from analyzing dynamic traces of program execution
for Cascade is the foundation for Prism. Although Cascade
remains a live product, the rise of multicore processors is
creating demand for new parallel-programming solutions.

Like C ascade, P rism is for embedded-system developers,
not programmers writing software for PCs and servers. It cur-
rently supports ARM and MIPS processors intended for mul-
ticore SoCs, but not ARC, x86, SPARC, or Tensilica processors.
Nor does Prism support GPUs, an increasingly popular alter-
native for parallel processing. Versions for the Power Architec-
ture and Renesas SH-Mobile architecture are in development.
CriticalBlue says additional CP U architectures are relatively
easy to support and will depend on customer demand.

Prism requires a separate simulator to gather the dynamic
trace data, and it’s limited to symmetric multiprocessing
(SMP) on shared-memory systems. C urrently, it doesn’t
support asymmetric multiprocessing (AMP)—a common
system architecture in embedded systems using two or more
processors. C riticalBlue says most customers wanted SMP
support first.

Compatibility With Existing Tools
CriticalBlue delivers Prism as a plug-in module for the Eclipse
Integrated Development Environment (IDE), an open-source

� Going Parallel With Prism

	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

framework rapidly gaining popularity among programmers.
Eclipse isn’t specific to any particular CPU architecture, oper-
ating system, or programming language. By delivering Prism
as an E clipse plug-in, C riticalBlue avoids the considerable
effort required to develop a proprietary IDE and convince
programmers that it’s better than existing tools.

Nor has CriticalBlue reinvented the wheels of compilers
or parallel programming. Prism works with any compiler
and assumes the legacy code was written in ANSI-compliant
C, C ++, or assembly language. C urrently, P rism assumes
most programmers will implement thread-level parallel-
ism using the Posix Threads library. Posix “pthreads” are a
platform-agnostic way to implement multithreading in C
and C++ (see Figure 1). For Toshiba, a lead customer, Prism
also supports the Venezia “V-thread” API. CriticalBlue says
Prism could support virtually any threading library, if cus-
tomer demand warrants it. A lthough programmers who
aren’t using Eclipse and pthreads may still find Prism useful
as a code-analysis tool, it works best for programmers who
are coding in C, with Eclipse as their front-end IDE.

Using Prism is a five-step process. First, Prism analyzes
the dynamic trace data gathered by running the target pro-
gram in a software simulator. N ext, before rewriting any-
thing, programmers study the results and explore various

alternatives for parallelizing the code. The
third step is to choose the best alternatives
(whatever the developer’s priorities) and
write the necessary code, starting with
Prism’s suggestions. N ext, P rism checks
for problems that could interfere with
proper execution and optimum perfor-
mance. Finally, programmers can repeat
the process to make additional perfor-
mance improvements.

As mentioned above, P rism doesn’t
include a software simulator. Instead of
reinventing that wheel, too, C riticalBlue
assumes each developer will use a simu-
lator already available for the target plat-
form. For ARM processors, this might
be the QEMU-based simulator in Code-
Sourcery’s Sourcery G++. (QEMU is an
open-source microprocessor emulator.)
For MIPS processors, it will probably be

MIPSsim, from MIPS Technologies. For Power Architecture
processors, the likely choice will be Virtutech’s Simics.

Running a program in a simulator can take many hours,
depending on the program’s size, its functions, the simula-
tor’s efficiency, and the speed of the computer on which the
simulator runs. Simulation generates a prodigious amount
of trace data that records every function call, memory
transaction, and other operation the program performs.
Data about memory references is particularly important,
because it allows Prism to find the interdependencies that
prevent some functions from executing in parallel.

Dependencies: The Enemy of Parallelism
Prism can identify all three types of classic data dependen-
cies. O ne is a “true” data dependency, also known as read
after write (RAW). Another is an antidependency, or write
after read (WAR). T he third is an output dependency, or
write after write (WAW). Figure 2 illustrates some examples
of arithmetic operations that can create these dependencies.

RAW dependencies can’t be fixed, because they occur
when an operation needs the result of a previous opera-
tion. For instance, a function that calculates the annual
sales of a company by summing the monthly sales can’t
proceed until a previous function sums the weekly sales.
The two operations have a true data dependency, so they
can’t execute out of order or in parallel. However, it still
may be possible to improve a program’s overall perfor-
mance by rescheduling some of these RAW dependencies
around other dependencies.

WAR antidependencies are relatively easy to fix. T hese
may occur if the processor runs out of available registers
to hold a working data set, or if two or more operations
need to use the same memory, variable, or buffer. A good
programmer or optimizing compiler can eliminate antide-
pendencies by improving the allocation of these resources.

Figure 1.	 Prism assumes most programmers will implement multithreading with the Posix
Thread API. Although Prism can suggest places where threading will improve performance,
it doesn’t automatically generate parallel code or modify existing code. CriticalBlue says early
customers were adamant about keeping their programs untouched.

Figure 2.	 Prism analyzes dynamic trace information to identify three
classic types of data dependencies that prevent certain operations
from executing in parallel.

err = 0;
		 for (r = 0, i = 0; r < mb_rows; ++r) {
			 for (c = 0; c < mb_cols; ++c, ++i) {
				 // pack each macroblock arguments and launch thread
				 mbe_arg_pack(&arg[i], image, r, c, huffman, 0);
				 // each mb created locally
				 pthread_create(&thread[i], NULL, mbe_func, &arg[i]);
		 }
	}
	
	 	// wait for threads to finish
		 for (i = 0; i < mb_rows * mb_cols; ++i) {
			 pthread_join(thread[i], (void *)&status);
			���� �������������� ������������������ �����if (!err && arg[i].err) err = arg[i].err;
	}

�Going Parallel With Prism

	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

WAW output dependencies occur when an operation
needs the result of a previous operation that hasn’t yet
saved its result in memory. If allowed to proceed, the sec-
ond operation will read obsolete data. Some microproces-
sors have data-forwarding logic that automatically detects
an instruction-level WAW dependency and forwards
the pending result to a subsequent operation that needs
it. L ikewise, some processors with data caches can auto-
matically intercept a read operation and redirect it to the
pending data held in the cache. T hese techniques enable
instruction-level parallelism and are usually transparent to
programmers. To enable thread-level parallelism, however,
programmers must fix WAW dependencies by rearranging
some code.

Simply finding and identifying all these data dependen-
cies in existing sequential code is half the battle. They can be
very subtle. Often they aren’t visible in neighboring lines of
source code. Different functions scattered widely through-
out a program may have mutual dependencies that aren’t
immediately apparent. Pointers and other indirect memory
references can hide these hazards, too. P rism has several
features that help programmers find, analyze, and fix these
problems.

Rooting Out Dependencies
Figure 3 is a cropped screen photo of P rism analyzing a
program that encodes and compresses video streams into
H.264 format. Prism has found and identified thousands of

Figure 3.	 Finding data dependencies with Prism. Columns on the left identify the functions, source files, and lines of code in which Prism has found
data dependencies. Columns on the right identify the types of dependencies (read after write, write after read, or write after write) and the number
of occurrences that Prism found in the trace data after a simulation run. In this example, the programmer has highlighted a write-after-read (WAR)
dependency in line 69 of the “h264_parallel.c” source file.

Figure 4.	 Analyzing source code with Prism. When the programmer clicks on a WAR dependency highlighted in Figure 3, Prism automatically loads
the C source file (“h264_parallel.c”), scrolls the Eclipse text editor to the corresponding function (filter_mb_edgeh_worker), outlines the
offending line of code (line 69), and indicates that this line is both the source and destination of the dependency. In this example, the function is
performing two operations on the same variable in the same statement, potentially creating a WAR dependency.

� Going Parallel With Prism

	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

dependencies in the trace of an H.264 function (filter_mb_
edgeh_worker) that performs edge detection on macro-
blocks (groups of pixels). T his particular function suffers
from all three types of dependencies. Fixing them won’t
require a programmer to rewrite thousands of lines of code,
though. Only a few statements (indicated by their line num-
bers) are responsible, because the program calls this func-
tion often.

When the programmer selects a dependency in the table
shown in Figure 3, Prism automatically displays the corre-
sponding line of source code in the Eclipse text editor. In a
narrow column to the left of the source code, Prism indicates
whether that code is the source, the destination, or both the
source and destination of the dependency. Figure 4 shows a
cropped screen photo of the text editor.

Although some tasks in this example program are
threaded already, they aren’t properly synchronized, so they
may create data races when executing in parallel—but not
always. For programmers, this hazard is particularly mad-
dening. A program can run properly on one type of mul-
tiprocessing system (say, a dual-core processor) but fail on
another (such as a quad-core processor). Simply changing
the degree of parallelism can alter the thread scheduling
in ways that cause a function to stall while waiting for the
results of another function. Sometimes, a program works
correctly for years before the problem appears. (See MPR
4/30/07-02, “The Dread of Threads.”)

Prism can reveal these hidden races in a data-flow graph,
as Figure 5 shows. Red arrows indicate potential data races.
Ideally, all arrows should point forward (left to right), indi-

cating that data is flowing forward
in time. Some do, by luck. Under
different conditions, they might not.
When an arrow points backward, it
means one thread needs data that
isn’t ready in another thread, so the
first thread will stall.

Programmers can resolve data
races by synchronizing the threads
or by forcing dependent functions to
execute serially. Sometimes it’s a sim-
ple resource-allocation problem. In
this example, the programmer tried
to conserve resources by using the
same memory to temporarily store
all the macroblocks that the program
is compressing. O n a single-core
processor, this approach works fine.
On a multicore processor, multiple
threads contend for the same mem-
ory. Figure 6 shows the data-flow
graph after fixing the problems.

Figure 5.	 A multithreaded data-flow graph in Prism. In this example, four threads are running in parallel on a quad-core processor. Red arrows
indicate potential data races between threads. Arrows pointing from left to right indicate the correct data flow—forward in time. Arrows pointing
backward indicate problems—needed data won’t be ready, causing a thread to stall until the data is available.

Figure 6.	 After the programmer forced some data-dependent operations in the edge-detection func-
tion to execute serially, Prism’s data-flow graph shows all data flowing forward in time (red arrows
pointing from left to right). This modification allows that function to run in parallel with other threads
calling the same function.

�Going Parallel With Prism

	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

Testing What-If Scenarios
Sometimes, adding threads or cores won’t accelerate a pro-
gram. There may be too many true data dependencies to take
advantage of multithreading. O r perhaps the overhead of
thread management outweighs the gains of executing small
tasks in parallel. Or maybe the program reaches a point of
diminishing returns at a particular number of processor
cores. If the only way to answer these questions is to repeat-
edly modify the program and test it on different hardware
configurations, the developers will be laboring a long time.
And what if the hardware design isn’t finished yet?

Figure 7.	 Software developers can quickly add or subtract proces-
sor cores to test a program with different multicore configurations. (If
only hardware developers had it this easy.)

Figure 8.	 This composite of two cropped screen photos shows the results of forcing a function named get_cabac to run in parallel threads on
a quad-core processor. In the top analysis, the partially threaded version of get_cabac executes in 47% fewer clock cycles than a sequentially
coded version. In the bottom analysis, forcing get_cabac to run as a fully independent thread actually worsens performance—it executes in only
17% fewer clock cycles than sequential code. In this case, dependencies limit the benefits of parallelization.

� Going Parallel With Prism

	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

Prism can save months of work by making these explora-
tions as easy as testing financial what-if scenarios in a spread-
sheet. As Figure 7 shows, adding more (virtual) processor
cores requires only a few mouse clicks. CriticalBlue says that
even a change this significant won’t require developers to
rerun the simulation. Prism reanalyzes the previously cap-
tured trace data to match the new scenario.

Similarly, developers can predict the results of execut-
ing certain tasks in separate threads—before rewriting any
code. Using the original trace data, P rism recalculates all
the thread scheduling and dependencies, then estimates the

effect on performance. Figure 8 shows the results of forcing
a function named get_cabac to run in its own thread on
a quad-core processor. In this example, partially threaded
code runs faster than unthreaded code and fully threaded
code, because executing this function in parallel creates new
dependencies that can’t be resolved.

The ability to test and evaluate different scenarios without
rewriting a program is huge. Developers can explore numer-
ous possibilities and make intelligent decisions before com-
mitting human resources to refactor the code. Even if Prism
leads a developer to conclude that an existing program won’t

benefit from any parallelization
at all, the time saved is probably
worth the cost of the tool.

Indeed, P rism has applica-
tions beyond parallel program-
ming. Its thorough analysis is
useful for understanding the
mechanics of any program
and for profiling a program’s
performance. P rism would be
valuable for analyzing any large
program written years ago by

Figure 9.	 Prism’s hot-spot finder. This screen displays all the functions of a program in a tree hierarchy and shows the number and percentage of
clock cycles that each function requires during the simulation run.

Figure 10.	Prism’s hot-spot finder (detail). This closeup from Figure 9 reveals that only seven functions,
though called only once, account for 97.4% of the clock cycles required to encode a video stream in H.264
format. These functions are obvious candidates for optimization.

�Going Parallel With Prism

	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

programmers who have long since departed, leaving behind
legacy code that must be maintained. Figures 9 and 10 show
Prism’s hot-spot finder, which displays a hierarchical tree
of program functions and the percentage of execution time
that each function consumes in simulation.

Figures 11 and 12 show another view of the same pro-
gram. This time, Prism displays a graphical representa-
tion of the functions. A rrows indicate which functions
are calling other functions. T his view reveals long call
chains that may be inefficient or create potential schedul-
ing problems for a parallel implementation.

There is a limit to what-if scenarios. When developers
finally do get around to rewriting code, any changes that
significantly alter the program’s behavior will naturally
make the original trace less indicative of the program’s
new performance. P retty soon, the original trace will
become obsolete. A t that point, developers must run
another trace to model the new behavior and use Prism
to analyze the results again. Trace runs can take a long
time, especially if they are cycle-accurate instead of
instruction-accurate. T his iterative process adds more
time to the usual development cycle of refactoring the
code, recompiling the code, and testing the code.

Unfortunately, this limitation seems unavoidable. In
defense, C riticalBlue says that traces can remain useful
through several recompilation cycles, depending on the
extent of the code changes. A nd with each retrace, P rism
performs a fresh analysis, looking for new ways to optimize
the program.

Figure 11.	Prism’s function-call graph. This scrollable screen displays every function in the program, with arrows connecting functions that called
other functions during the simulation run. Together with the hot-spot finder shown in Figures 9 and 10, this view is another way of visualizing the
hierarchical structure of a program.

Figure 12.	Prism’s function-call graph (detail). This closeup from Figure 11
shows individual functions in green boxes. Arrows indicate function calls. Yel-
low boxes record the number of times the program called a particular function
during the simulation run.

� Going Parallel With Prism

	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

CriticalBlue Finds Early Adopters
Although P rism was officially released at the M ulticore
Expo in M arch, C riticalBlue began delivering early ver-
sions to lead customers in June 2008. Toshiba (an investor
in CriticalBlue) was the first customer. Toshiba is shipping
a custom version of Prism (V-Prism) as part of the software
development kit (SDK) for its Venezia platform. Venezia is
a homogeneous multicore SoC architecture for embedded
systems. It’s built around Toshiba’s Media Embedded Pro-
cessor (MeP) cores. (See MPR 6/10/02-02, “New Processors
for New Media.”)

For other customers, CriticalBlue delivers Prism in a plat-
form support package (PSP) for specific processors. O ne
form is a C ore P SP, which typically uses an instruction-
accurate simulator to analyze a single program running on
a single core. It’s intended to help programmers implement
multithreading across multiple cores.

Another Prism package is a System PSP. It is specific to a
processor-based platform—such as a multicore chip, a mul-
tiprocessor system board, or a processor family. CriticalBlue
says a System P SP models the system architecture more
closely, includes more system effects in the trace, and pro-
vides more analysis and suggestions specific to the target
platform.

Currently, Prism can analyze the trace of only one pro-
gram at a time. Other programs can run during the trace,
and they will affect P rism’s analysis as they compete for
resources and interact with the traced program. But Prism’s
detailed trace analysis will be limited to the target program.

CriticalBlue says a full trace analysis of multiple programs
running simultaneously is feasible, but it’s not currently in
development.

A third option for Prism is a Custom PSP. On demand,
CriticalBlue can support almost any processor or platform,
as the company has done for Toshiba’s Venezia. In addition,
developers can use Prism alongside Cascade, CriticalBlue’s
aforementioned C-to-RTL tool (available separately). With
both tools, developers can both optimize their software
and generate hardware coprocessors to accelerate critical
functions.

At present, CriticalBlue has PSPs for the ARM and MIPS
architectures, including the ARM C ortex-A9 MPC ore,
ARM11 MPCore, MIPS 1004K, and MIPS 74K processors.
CriticalBlue has demonstrated beta versions of P rism for
Freescale P ower A rchitecture processors and the R enesas
SH-Mobile architecture. PSPs for other embedded proces-
sors are in development. Pricing starts at $200 a month for
a Core PSP.

Just because Prism doesn’t currently support a particular
processor core or CPU architecture doesn’t mean it is use-
less to other developers. CriticalBlue says some developers
are using the ARM version of Prism as a general-purpose
tool for analyzing their program code, even though they
aren’t targeting ARM . T he analysis is, necessarily, rather
coarse. But it can lead programmers to a better understand-
ing of their code and help them find opportunities for
parallelism.

Prism’s Potential Limitations
An optical-glass prism is a wondrous object that reveals the
hidden color components of white light. Similarly, C rit-
icalBlue’s P rism reveals the hidden aspects of a program.
Interactions that are unimportant when code executes
sequentially become very important when the same code
tries to execute in parallel. Without a tool like Prism, data
dependencies may remain as invisible as the spectrum of
colors concealed in white light. So, in many ways, Prism can
be educational as well as analytical. It’s a valuable learning
tool for the vast majority of programmers who weren’t for-
mally schooled in parallel programming and who need to
update their skills.

In practice, some limitations are bound to surface. One
is that any analysis based on dynamic trace data depends on
the nature of the trace. The fewer possible paths through a
program, the better Prism’s analysis is likely to be, because
there is less data to analyze and fewer execution scenarios.
When a program has many possible paths of execution, not
only will a fully explored simulation take more time, but it
may also exhibit different patterns of dependencies.

As an analogy, consider a GPS trace of an automobile
journey. There may be numerous possible routes from start
to finish, each with its own hazards and potential bottle-
necks. To find the best route, a driver may have to explore
several routes, then do a comparative analysis of the GPS

P r i c e & Av a i l a b i l i t y

CriticalBlue’s Prism code-analysis tool is available
now for ARM and MIPS embedded-processor cores.
CriticalBlue has demonstrated beta versions for Fre-
escale’s Power Architecture cores and the Renesas SH-
Mobile architecture.

Prism is available in three forms of platform sup-
port packages (PSP). A Core PSP analyzes dynamic
trace data for one program running on a single-core
processor. A System PSP can analyze more system-
level behavior for one program running on a platform,
which may include a multicore chip. CriticalBlue can
tailor a Custom PSP for a customer’s requirements.
Prices start at $200 a month to lease a Core PSP for
a target processor. Prices for a System PSP or Custom
PSP are negotiable.

Prism requires a software simulator for the target
processor. Simulators are available separately from
processor vendors and third parties.

For more information about Prism, see:
www.criticalblue.com/criticalblue_products/prism.shtml

�Going Parallel With Prism

	 © I n - S t a t 	 A p r i l 2 7 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

data. Although Prism can reanalyze a trace for different sce-
narios, additional simulation runs may still be necessary in
some circumstances.

A systemwide analysis of multiple programs running
simultaneously is even more challenging, especially if the
programs contend for shared resources. Even the operating
system becomes a factor. In a shared-memory SMP system,
the O S and application programs compete for the same
resources. The number of possible interdependencies rises
with each additional program, thread, and processor core.
Even with a tool as powerful as P rism, developers can be
overwhelmed—especially because Prism currently analyzes
only one program trace at a time.

Another limitation of P rism is that it can’t be more
cycle-accurate than the simulator capturing the trace. Some
dependencies are sensitive to scheduling conflicts that only
a fully cycle-accurate simulation can expose. Cycle-accurate
simulators are agonizingly slow, particularly when simu-
lating SMP on a multicore processor. O n the other hand,
Prism can perform a great deal of analysis on a cycle-
accurate trace, reducing the need to rerun the trace after
each recompilation.

We have already mentioned that Prism is currently lim-
ited to only a few CPU architectures—though we agree that
ARM, MIPS, and the Power Architecture are the best places
to start. And for now, P rism can’t perform a system-scale
analysis of a heterogeneous multicore design, which rules
out many embedded SoCs. But C riticalBlue seems eager
for a challenge. Prism is very much a work in progress, and
CriticalBlue says it will entertain almost any proposal from
an important customer.

After seeing what Prism can do, despite the drawbacks,
it’s hard to imagine tackling any but the simplest parallel-
programming project without such a tool. N obody said
software development in the multicore era would be
painless. 

F o r M o r e I n f o r m a t i o n

For related information about multicore processors
and software-development tools, see the following
Microprocessor Report articles:
MPR 12/22/08-01,	“AMD’s Stream Becomes a River”
MPR 7/28/08-01,	 “EEMBC’s MultiBench Arrives”
MPR 7/28/08-02,	 “�Editorial: Tools for Multicore

Processors”
MPR 4/28/08-01,	 “�Multicore Multithreading With

MIPS”
MPR 3/31/08-01,	 “Editorial: Think Parallel”
MPR 1/28/08-01,	 “Parallel Processing With CUDA”
MPR 12/31/07-02,	“Editorial: The Future of Multicore
 Processors”
MPR 11/26/07-01,	“Parallel Processing For the x86”
MPR 8/13/07-01,	 “Fujitsu Calls Asynchronously”
MPR 6/4/07-01,	 “MIPS 74K Performance Update”
MPR 5/29/07-01,	 “MIPS 74K Goes Superscalar”
MPR 4/30/07-02,	 “Editorial: The Dread of Threads”
MPR 10/2/06-01,	 “Number Crunching With GPUs”
MPR 5/24/04-01,	 “ARM Opens Up to SMP”

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

