
	 © I n - S t a t 	 J u n e 8 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

reportM I C R O P R O C E S S O R
www.MPRonline.com

	 	T h e i n s i d e r ’ s g u i d e t o m i c r o pr o c e s s o r h a r d w a r e 	

EEMBC’s Dhrystone Killer
Free CoreMark Benchmark Aims to Retire Dhrystone Forever

By Tom R. Halfhi l l {6/8/09-01}

Markus Levy thinks Dhrystone is all wet. Levy has been on the warpath against the hoary

Dhrystone benchmark since founding the Embedded Microprocessor Benchmark Con-

sortium (EEMBC) in 1997. EEM BC has spent nine years introducing several suites of

respected benchmarking programs—and, perhaps more
important, empirical testing and verification procedures to
go with them. N evertheless, Dhrystone remains the most
widely quoted measure of microprocessor performance.

On June 1, EEM BC introduced an alternative: C ore-
Mark. It’s an all-new benchmarking program that anyone
can download and use. CoreMark isn’t a substitute for the
EEMBC suites, which remain a more sophisticated and
comprehensive way of measuring performance. But it’s free,
portable, easy to use, and produces an easy-to-understand
score.

CoreMark has all the advantages of Dhrystone (except for
entrenched longevity) while modernizing the workload and
eliminating some of Dhrystone’s worst flaws. For the sake
of the microprocessor industry, Levy hopes it will be the
ultimate Dhrystone killer. (Editor’s note: Levy is a member
of the Microprocessor R eport editorial board and a former
MPR analyst.)

A Benchmark for Archaeologists
Why is Dhrystone so hard to budge? Its best quality is that
it’s free. Anyone can download and run it. With the excep-
tion of EEMBC’s GrinderBench for cellphones, the regular
EEMBC benchmark suites are available only to consortium
members and licensees. In addition, Dhrystone is processor-
agnostic, having been ported to virtually every CPU archi-
tecture on the planet. And the source code is open, so any-
one can recompile it for new architectures.

Dhrystone is easy to use, unencumbered by the formal
testing and verification requirements that make EEM BC’s
benchmarks more rigorous. (See MPR 5/1/00-02, “EEMBC
Releases First Benchmarks,” and MPR 6/21/99-01, “Embed-
ded Benchmarks Grow Up.”) Dhrystone produces a single
figure of merit—Dhrystone millions of instructions per sec-
ond (mips), or Dmips—that’s easy to grasp and leaves little
room for interpretation. Dhrystone is such a small program
that it doesn’t stress the memory system or I/O channels, so
it focuses exclusively on the performance of the micropro-
cessor core.

Despite its advantages and popularity, Dhrystone is also
the most widely disparaged benchmark. For one thing, it’s
positively ancient, by computer-industry standards. Origi-
nally written in A da by R einhold Weicker in 1984, it was
ported to C for U nix a few months later, revised in 1988,
and finalized that same year. So the “latest” version, Dhrys-
tone 2.1, has been unchanged for 21 years—a technological
fossil. (Weicker named Dhrystone as a pun on Whetstone,
an unrelated floating-point benchmark developed in 1972.)

Dhrystone executes simple loops of integer-only work-
loads that poorly reflect today’s software. Lacking a for-
mally defined testing methodology, it’s easily manipulated.
It’s easy prey for modern compilers and subversive testers,
who can optimize some tasks completely out of existence.
It fits entirely within the L1 cache of almost all processors
that have a cache, simulating an almost impossibly perfect
memory system.

� EEMBC’s Dhrystone Killer

	 © I n - S t a t 	 J u n e 8 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

To derive a single figure of merit, most testers divide the
raw Dhrystone score by 1,757. That formula expresses Dmips
as a multiple of a DEC VAX 11/780—a 1.0Dmips minicom-
puter from 1977, now found in museums. But the Dmips for-
mula isn’t standardized. Some testers use different divisors,
indexing the Dmips score to variants of the VAX 11/780.

EEMBC’s regular benchmark suites, testing methodol-
ogy, and certification rules address all of Dhrystone’s short-
comings. In addition, the EEMBC suites focus on specific
application areas that are much more relevant to modern
embedded computing. (See MPR 2/22/05-01, “EEMBC
Expands Benchmarks.”)

Nevertheless, Dhrystone lingers on, mainly because join-
ing EEMBC to use the suites costs money. A full commercial
membership costs several thousand dollars. (Universities
and some companies can license an EEM BC benchmark
suite for as little as $150 without joining the consortium;
EEMBC has more than 100 licensees.) If C oreMark suc-
ceeds, it will finally turn Dhrystone into an artifact as his-
torical as the hardware for which it was developed.

Small But Fiesty
Like all EEM BC benchmark software, C oreMark is a col-
laborative project based on input from the nonprofit
consortium’s 50-plus member companies and organiza-
tions. Agreeing on the form, goals, and composition of any
benchmark can take longer than writing the program code.
CoreMark was no exception. It provoked debate among
consortium members, as we will discuss below.

Usually, EEMBC members collaborate on the code, too.
In this case, because CoreMark is a single, small program,
all the code was written by Shay Gal-On, EEMBC’s direc-
tor of software engineering. T he whole project, including
committee work, took about eight months. T he C source
code is available at a new website (www.coremark.org) after
free registration.

CoreMark shares some characteristics with Dhrystone.
It measures integer performance only—no floating point.
EEMBC made this decision because CoreMark is intended
primarily for embedded processors, including small 8-,
16-, and 32-bit processors still lacking such modern con-
veniences as FPUs. C oreMark is small, though not quite
as small as Dhrystone. Requiring only 2KB of memory at
run time, it fits entirely into a small L1 cache, but it’s also
suitable for benchmarking cacheless cores. In comparison,
Dhrystone 2.1 needs only 64 bytes of memory at run time.

CoreMark has only one workload and three algorithms—
or perhaps four, depending on how they’re counted. T he
first algorithm tests matrix manipulation, using 16-bit inte-
ger inputs that generate 16- or 32-bit results, depending on
the processor for which CoreMark has been compiled. Pro-
cessors with efficient multiply-accumulate (MAC) instruc-
tions should do well in this test.

The second algorithm tests state-machine operation, or
control code. T hese are mostly byte-size instructions that
compare values and branch to other instructions. Some
embedded programs are filled with control code, whereas
data-intensive programs have relatively little. If the target
processor has branch prediction, it will do better in this test.

A third test manipulates a linked list of pointers using out-
puts from the first two algorithms. Pointers may be 16-, 32-,
or 64 bits long, depending on the processor for which Core-
Mark was compiled. All three tests also exercise basic read/
write operations to memory. The bar chart in Figure 1 shows
the distribution of instruction types in these three tests.

Figure 2 shows the distribution of instructions in a binary
file compiled for the x86 architecture. This chart resembles
the Power Architecture profile in Figure 1, but testers had to
use different profiling tools for the two architectures, so the
instruction labels differ.

	 Benchmark, Verify Thyself
The final CoreMark test is a cyclic redun-
dancy check (CRC), which serves two pur-
poses. First, CRCs are common in embed-
ded programs, which often use checksums
to verify the data integrity of I/O transfers
and other operations. Second, CoreMark
uses CRC s to check itself—to verify the
data integrity of its input and output.
This safeguard helps prevent some forms
of cheating that would artificially reduce
or eliminate the workload.

Another verification feature is that
seed values for C oreMark algorithms
cannot be determined at compile time.
CoreMark generates the seeds at run time
and verifies them during the program
run. A t the end of the run, C oreMark
performs a final CRC, reports whether all
the tests passed verification, summarizes

Figure 1. CoreMark instruction profile (Power Architecture). This chart counts the number of
each type of instruction in each part of the benchmark program, as compiled for a Power proces-­
sor. Load/store instructions dominate the code, followed by logical instructions, compares, and
branches. Notice that multiply and divide instructions appear only in the matrix-­manipulation
test. (Data sources: IBM and EEMBC.)

statematrixlist
0%

20%

40%

60%

80%

100%
reg2reg
Load/Store
Logical
Shift/Rotate
Compare
Branch
Multiply/Divide
Add/Subtract

�EEMBC’s Dhrystone Killer

	 © I n - S t a t 	 J u n e 8 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

information about the test run, and reports
the score. The score is the number of itera-
tions per second during the run, so higher
scores are better. Figure 3 shows the results
of running CoreMark on an x86 processor.

To produce an official score, EEM BC
requires CoreMark to run on the target pro-
cessor for at least 10 seconds. Before compil-
ing the source code, testers can adjust the
number of iterations to ensure a test run
meets this rule. Regardless of the number of
iterations, C oreMark always calculates the
final score as iterations per second. T here-
fore, the score is directly comparable with
CoreMark scores for other processors, no
matter what their CPU architecture, clock
frequency, or bus speed is.

CoreMark scores aren’t fractions or mul-
tiples of a baseline machine, in the way that
Dhrystone-mips scores relate to the VAX
11/780 from 1977. MPR thinks EEM BC
missed a golden opportunity to define a
“CoreMark mips” score indexed to a similarly
beloved but more recent baseline computer.
Too bad there isn’t an embedded system as
iconic as the VAX. As a substitute, our tongue-
in-cheek suggestion is the best-selling personal
computer in history—the Commodore 64.

Some Optimizations Allowed
As with other EEMBC benchmarks, EEMBC
requires C oreMark testers to disclose the
development tools used to compile the
source code, the optimization flags set for
the compiler, and the speed of the memory
system attached to the CPU . O f course,
EEMBC can’t police these rules for everyone,
but EEMBC requires these disclosures from
testers who post scores on the C oreMark
website. Anyone should be able to duplicate
the posted results by using the same CPU ,
memory system, compiler, and flags.

A novel feature of other EEMBC bench-
marks is a rule allowing testers to optimize
the benchmark code in ways that might
be considered cheating if applied to other
benchmarking programs. U nmodified
EEMBC code produces baseline or “out-of-
the-box” scores. M odified code produces
optimized or “full fury” scores. These options
are a nod to reality. In real-world applica-
tions, embedded-software developers often
use some rather athletic optimizations.

For example, testers can use any com-
piler flags they want and even rewrite critical

Figure 2. CoreMark instruction profile (x86). Integer operations and control-type instructions
(such as compares and branches) dominate the x86 binary. The no-operations (NOP) in the
state-machine test represent load-use delays, which the profiling tool used for Figure 1 didn’t
identify. Because the x86 is a CISC architecture, many instructions combine logical or arithmetic
operations with load/store operations, making the instruction profile less precise. (Data source:
EEMBC.)

Figure 3. Typical CoreMark results. MPR ran this test on a 1.2GHz Intel Core 2 Duo pro-­
cessor with a 533MHz front-side bus. “CoreMark Size” is the buffer for each of the three
benchmark tests (one-third of 2KB, or 666 bytes). This processor needed 12.39 seconds to
run 40,000 iterations, yielding a score of 3,228.25 iterations per second. Compiler version
“CL15” is Microsoft’s Visual C++ compiler. The binary code fit entirely in the processor’s L1
cache. The remaining output shows that CoreMark verified the input seed and all the output
with a cyclic redundancy check (CRC).

matrixlist allstate
0%

20%

40%

60%

80%

100%

nopshift othercontrol stackint

� EEMBC’s Dhrystone Killer

	 © I n - S t a t 	 J u n e 8 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

portions of EEMBC’s benchmark kernels in assembly lan-
guage. As long as testers disclose the compiler flags and the
use of any assembly routines, the optimizations are legal
under EEMBC’s full-fury rules.

EEMBC says C oreMark will continue this tradition,
including assembly-language optimizations. An even more
intriguing possibility is that testers could modify and com-
pile CoreMark to run some operations in parallel on a mul-
ticore processor. CoreMark could be the poor man’s alterna-
tive to the EEMBC MultiBench suite, which is available only
to consortium members and licensees. (See MPR 7/28/08-
01, “EEMBC’s MultiBench Arrives.”)

At this point, however, EEMBC hasn’t finalized the rules
for full-fury C oreMark benchmarking. U ntil then, C ore-
Mark scores will be considered out-of-the-box scores.
EEMBC permits compiler-flag optimizations for out-of-
the-box scores as long as testers disclose the flags and use a
publicly available compiler.

EEMBC’s Seal of Approval
Benchmarking is the most controversial subject in comput-
ing. (See MPR 8/30/04-01, “Benchmarking the Benchmarks.”)
To head off some disputes, EEMBC will offer certification
services for CoreMark scores, as it does for other EEMBC
benchmark scores.

During the certification process, EEM BC will check
the compiled code and try to replicate the original tester’s
reported results. If anything strange turns up, EEMBC will
consult with the original testers to resolve the anomalies.
Certified scores will be specially noted on the C oreMark
website. Certification is free for EEMBC members. At this
time, there’s no certification option for nonmembers. (It’s
subtle encouragement to join EEMBC.)

In a radical departure from other EEM BC benchmarks,
anyone can use CoreMark to test microprocessors from any
vendor and post scores on the CoreMark website. This rule
change provoked debate among EEMBC members. For years,
members have resisted proposals to allow competitive or
independent public benchmarking. Testers must join EEMBC
or buy a license to get the benchmark suites, and the consor-
tium’s rules forbid members and licensees from publishing
scores for any processors but their own. P rivately, EEM BC
members often use the suites to compare the performance

of their processors with those of competitors. C ompetitive
benchmarking is allowed, as long as scores are kept private.

In contrast, C oreMark is wide open. Vendor A can test
processors from Vendor B and post scores. Independent
parties can test processors from any vendors and post scores.
Testers must register on the CoreMark website but need not
disclose their identities. EEMBC members may contest the
scores by posting their own scores and comments on the
site. Indeed, the site is devoting a blog to this purpose.

Nonmembers must suffer in silence—on the CoreMark site,
at least. Of course, nonmembers may post anything they want
on their own websites, but the CoreMark site won’t link to their
rebuttals. (Again, it’s subtle encouragement to join EEMBC.)

EEMBC hopes CPU vendors will post source code for the
portable layer of the benchmark program on the CoreMark
site for public download. In this way, vendors can ensure
that other testers will use a porting layer optimized for the
target processor. For some CPUs, testers may have to com-
pile multiple binaries. A lthough an x86 binary is nearly
universal, binaries for other architectures may be compiled
specifically for particular development boards. Binaries
compiled for microcontrollers may contain code specific to
their integrated peripherals, such as UARTs and timers.

Although C oreMark, like Dhrystone, is a standalone
program, testers can use it as part of a larger benchmark-
ing regimen. In particular, CoreMark works with EEMBC’s
EnergyBench, which measures power consumption. How-
ever, E nergyBench isn’t free. It’s available only to EEM BC
members and licensees. (See MPR 7/17/06-02, “EEMBC
Energizes Benchmarking.”)

Analyzing CoreMark Scores
CoreMark is a quick-and-dirty benchmark program, so
MPR decided to give it a quick-and-dirty test. One goal was
to determine if CoreMark can distinguish among different
microarchitectures of the same CPU architecture. A good
CPU benchmarking program should demonstrate superior
scores on superior microarchitectures instead of merely
scaling linearly with clock frequency. Our second goal was
to compare CoreMark with Dhrystone.

We ran CoreMark and Dhrystone on three different Intel
x86 processors. (They are PC processors, not the embedded
processors for which CoreMark is primarily intended, but
PCs were more convenient.) The processors were a 1.0GHz
Celeron, 2.0GHz Celeron, and 1.2GHz Core 2 Duo.

It’s important to note that although the first two proces-
sors are Celerons, they are very different beasts. The 1.0GHz
Celeron is based on Intel’s P6 microarchitecture, also found
in the Pentium II and Pentium III. In contrast, the 2.0GHz
Celeron is based on Intel’s later Netburst microarchitecture,
which first appeared in the Pentium 4. Core 2 Duo is based
on Intel’s C ore microarchitecture and is a more recent
design, currently being superseded by Core i7 (Nehalem).

Because Netburst was an improvement over the P6, one
would expect its throughput to exceed its advantage in raw

P r i c e & Av a i l a b i l i t y

EEMBC’s CoreMark benchmarking program is free
and available now. To download the C source code,
register at www.coremark.org. A small part of the
program requires porting to the target CPU archi-­
tecture. In the future, CPU vendors may provide this
porting layer (as well as suggested compiler flags) on
the CoreMark website.

�EEMBC’s Dhrystone Killer

	 © I n - S t a t 	 J u n e 8 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

clock speed. In other words, the
2.0GHz Celeron should be more
than twice as fast as the 1.0GHz
Celeron. A nd indeed, as the
scores in T able 1 show, C ore-
Mark found the 2.0GHz Celeron
to be three times faster than the
1.0GHz Celeron.

Likewise, C oreMark rates the
much newer Core 2 Duo processor
more favorably than the Netburst
Celeron, despite a significant dis-
parity in clock frequency. C ore 2
Duo runs at only 1.2GHz, whereas
the N etburst C eleron runs at
2.0GHz—yet CoreMark says Core
2 Duo is 17% faster. T his result
is what we would expect from a
benchmark program that distin-
guishes between different micro-
architectures and isn’t fooled by
raw clock speed.

In contrast, the Dhrystone scores are simply unbeliev-
able. Dhrystone says the 2.0GHz Celeron with newer Net-
burst design is only 9% faster than the 1.0GHz Celeron with
older P6 design. Even if Dhrystone scaled linearly with clock
frequency, the 2.0GHz Celeron should be 100% faster.

Dhrystone also reports a wildly different result when
benchmarking Core 2 Duo. It says the newer 1.2GHz pro-
cessor is 122% faster than the 2.0GHz C eleron, whereas
CoreMark says C ore 2 Duo is only 17% faster. C oreMark
is more credible, because Core 2 Duo is running at a much
lower clock speed but has an improved microarchitecture.

Although C ore 2 Duo has a faster front-side bus than
these C elerons (533MHz vs. 400MHz), it’s irrelevant for
benchmark programs that fit entirely into the L1 caches
of these processors. A nd although C ore 2 Duo has twice
as many processor cores as these Celerons, our versions of
CoreMark and Dhrystone were not modified for multicore
execution, so they were running on only one core. There-
fore, our quick-and-dirty conclusion is that CoreMark is a
much better quick-and-dirty benchmark than Dhrystone.

CoreMark’s Pros and Cons
MPR coverage of new processors rarely cites scores from
the EEM BC benchmark suites. O ne reason is that some
CPU vendors still don’t belong to EEMBC. The main rea-
son is that most EEM BC members won’t publicly release
their scores. Yet they have no qualms about quoting Dhrys-
tone mips. We hope C oreMark will replace—or, at least,
supplement—Dhrystone as the improved quick-and-dirty
benchmark for new processors. In simulation, C oreMark

can even estimate the performance of a new design or soft
core that hasn’t achieved first silicon.

CoreMark addresses several shortcomings of Dhrystone:
its obsolescence, lack of standardized source code, artificial
workloads, practically nonexistent testing methodology,
compiler vulnerabilities, and easy cheating.

That said, C oreMark has shortcomings, too. C ertainly,
one small program with a handful of algorithms cannot
fully characterize the performance of a modern micropro-
cessor. Even EEMBC admits that. CoreMark is no substitute
for the fully fleshed EEMBC suites.

CoreMark is too small to represent most modern embed-
ded software, has no floating-point math, and reports only
a single composite score that prevents any performance
analysis of the underlying algorithms. CoreMark’s small size
fulfills its mission of isolating CPU-core performance, but it
simulates a perfect memory system—an unrealistic picture
of real-world performance, in most cases.

Although C oreMark is outclassed by the sophisticated
EEMBC suites, it has three advantages over them: it’s not
restricted to EEM BC members and licensees, it’s free, and
anyone can post competitive scores for processors from
different vendors. C oreMark has the potential to move
embedded-processor benchmarking from EEMBC’s monas-
tery to the masses.

The best thing about CoreMark is that it’s not Dhrystone.
Or, to look at it another way, it’s “Dhrystone 3.0,” overhauled
and updated for the first time in 21 years. Although Core-
Mark isn’t perfect, it’s much better than the most widely
quoted and embarrassing measure of microprocessor per-
formance the industry is using now. 

Intel
Celeron

Intel
Celeron

Intel
Core 2 Duo

CPU Architecture x86 x86 x86

Microarchitecture
P6

(Pentium II / III)
Netburst

(Pentium 4)
Core

(Core 2)

Processor Cores 1 1 2

Core Frequency
(Difference)

1.0GHz
—

2.0GHz
(+100% vs. 1.0GHz Celeron)

1.2GHz
(–40% vs. 2.0GHz Celeron)

Bus Frequency
(Difference)

400MHz
—

400MHz
—

533MHz
(+33% vs. Celerons)

Dhrystone 2.1
(Difference)

256
—

280
(+9% vs. 1.0GHz Celeron)

621
(+122% vs. 2.0GHz Celeron)

CoreMark
(Difference)

889
—

2748
(+209% vs. 1.0GHz Celeron)

3223
(+17% vs. 2.0GHz Celeron)

Table 1.	 CoreMark and Dhrystone scores for three Intel x86 processors, as benchmarked by MPR.
CoreMark reports credibly higher scores for newer microarchitectures instead of simply scaling the scores
at a linear rate with the processors’ clock speeds. The Dhrystone scores are much less credible. They
vary wildly and have little relationship to either clock speed or microarchitecture. (MPR submitted these
CoreMark scores to EEMBC, and they became the first results posted on the new CoreMark website.)

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

