
	 © 	 I n - S t a t 	 J u n e 	 8 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

reportM I C R O P R O C E S S O R
www.MPRonline.com

	 	T h e 	 i n s i d e R ’ s 	 g u i d e 	 T o 	 M i c R o P R o c e s s o R 	 h a R d w a R e 	

EEMBC’s DhrystonE KillEr
Free CoreMark Benchmark Aims to Retire Dhrystone Forever

By Tom R. Halfhi l l {6/8/09-01}

markus	Levy	thinks	Dhrystone	is	all	wet.	Levy	has	been	on	the	warpath	against	the	hoary	

Dhrystone	benchmark	since	founding	the	embedded	microprocessor	Benchmark	con-

sortium	 (eemBc)	 in	 1997.	 eemBc	 has	 spent	 nine	 years	 introducing	 several	 suites	 of	

respected	 benchmarking	 programs—and,	 perhaps	 more	
important,	empirical	testing	and	verification	procedures	to	
go	 with	 them.	 nevertheless,	 Dhrystone	 remains	 the	 most	
widely	quoted	measure	of	microprocessor	performance.

on	 June	 1,	 eemBc	 introduced	 an	 alternative:	 core-
mark.	 It’s	 an	 all-new	 benchmarking	 program	 that	 anyone	
can	download	and	use.	coremark	isn’t	a	substitute	for	the	
eemBc	 suites,	 which	 remain	 a	 more	 sophisticated	 and	
comprehensive	way	of	measuring	performance.	But	it’s	free,	
portable,	easy	 to	use,	and	produces	an	easy-to-understand	
score.

coremark	has	all	the	advantages	of	Dhrystone	(except	for	
entrenched	longevity)	while	modernizing	the	workload	and	
eliminating	 some	of	Dhrystone’s	worst	 flaws.	For	 the	 sake	
of	 the	 microprocessor	 industry,	 Levy	 hopes	 it	 will	 be	 the	
ultimate	 Dhrystone	 killer.	 (Editor’s note: Levy is a member
of the microprocessor	 report editorial board and a former
mpr analyst.)

A Benchmark for Archaeologists
Why	is	Dhrystone	so	hard	to	budge?	Its	best	quality	is	that	
it’s	free.	anyone	can	download	and	run	it.	With	the	excep-
tion	of	eemBc’s	GrinderBench	for	cellphones,	the	regular	
eemBc	benchmark	suites	are	available	only	to	consortium	
members	and	licensees.	In	addition,	Dhrystone	is	processor-
agnostic,	having	been	ported	to	virtually	every	cpu	archi-
tecture	on	the	planet.	and	the	source	code	is	open,	so	any-
one	can	recompile	it	for	new	architectures.

Dhrystone	 is	 easy	 to	 use,	 unencumbered	 by	 the	 formal	
testing	 and	 verification	 requirements	 that	 make	 eemBc’s	
benchmarks	more	rigorous.	(See	MPR 5/1/00-02,	“eemBc	
releases	First	Benchmarks,”	and	MPR 6/21/99-01,	“embed-
ded	Benchmarks	Grow	up.”)	Dhrystone	produces	a	 single	
figure	of	merit—Dhrystone	millions	of	instructions	per	sec-
ond	(mips),	or	Dmips—that’s	easy	to	grasp	and	leaves	little	
room	for	interpretation.	Dhrystone	is	such	a	small	program	
that	it	doesn’t	stress	the	memory	system	or	I/o	channels,	so	
it	focuses	exclusively	on	the	performance	of	the	micropro-
cessor	core.

Despite	its	advantages	and	popularity,	Dhrystone	is	also	
the	most	widely	disparaged	benchmark.	For	one	thing,	 it’s	
positively	ancient,	by	computer-industry	 standards.	origi-
nally	 written	 in	 ada	 by	 reinhold	 Weicker	 in	 1984,	 it	 was	
ported	 to	 c	 for	 unix	 a	 few	 months	 later,	 revised	 in	 1988,	
and	finalized	that	same	year.	So	the	“latest”	version,	Dhrys-
tone	2.1,	has	been	unchanged	for	21	years—a	technological	
	fossil.	(Weicker	named	Dhrystone	as	a	pun	on	Whetstone,	
an	unrelated	floating-point	benchmark	developed	in	1972.)

Dhrystone	 executes	 simple	 loops	 of	 integer-only	 work-
loads	 that	 poorly	 reflect	 today’s	 software.	 Lacking	 a	 for-
mally	defined	testing	methodology,	it’s	easily	manipulated.	
It’s	easy	prey	for	modern	compilers	and	subversive	testers,	
who	can	optimize	 some	 tasks	completely	out	of	existence.	
It	fits	entirely	within	the	L1	cache	of	almost	all	processors	
that	have	a	cache,	simulating	an	almost	impossibly	perfect	
memory	system.

2 eeMBc’s	dhrystone	Killer

	 © 	 I n - S t a t 	 J u n e 	 8 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

to	derive	a	single	figure	of	merit,	most	testers	divide	the	
raw	Dhrystone	score	by	1,757.	that	formula	expresses	Dmips	
as	a	multiple	of	a	Dec	VaX	11/780—a	1.0Dmips	minicom-
puter	from	1977,	now	found	in	museums.	But	the	Dmips	for-
mula	 isn’t	 standardized.	Some	testers	use	different	divisors,	
indexing	the	Dmips	score	to	variants	of	the	VaX	11/780.

eemBc’s	 regular	 benchmark	 suites,	 testing	 methodol-
ogy,	and	certification	rules	address	all	of	Dhrystone’s	short-
comings.	 In	addition,	 the	eemBc	suites	 focus	on	specific	
application	areas	 that	are	much	more	relevant	 to	modern	
embedded	 computing.	 (See	 MPR 2/22/05-01,	 “eemBc	
expands	Benchmarks.”)

nevertheless,	Dhrystone	lingers	on,	mainly	because	join-
ing	eemBc	to	use	the	suites	costs	money.	a	full	commercial	
membership	 costs	 several	 thousand	 dollars.	 (universities	
and	 some	 companies	 can	 license	 an	 eemBc	 benchmark	
suite	 for	 as	 little	 as	$150	without	 joining	 the	 consortium;	
eemBc	 has	 more	 than	 100	 licensees.)	 If	 coremark	 suc-
ceeds,	it	will	finally	turn	Dhrystone	into	an	artifact	as	his-
torical	as	the	hardware	for	which	it	was	developed.

Small But Fiesty
Like	 all	 eemBc	 benchmark	 software,	 coremark	 is	 a	 col-
laborative	 project	 based	 on	 input	 from	 the	 nonprofit	
consortium’s	 50-plus	 member	 companies	 and	 organiza-
tions.	agreeing	on	the	form,	goals,	and	composition	of	any	
benchmark	can	take	longer	than	writing	the	program	code.	
coremark	 was	 no	 exception.	 It	 provoked	 debate	 among	
consortium	members,	as	we	will	discuss	below.

usually,	eemBc	members	collaborate	on	the	code,	too.	
In	this	case,	because	coremark	is	a	single,	small	program,	
all	 the	code	was	written	by	Shay	Gal-on,	eemBc’s	direc-
tor	 of	 software	 engineering.	 the	 whole	 project,	 including	
	committee	 work,	 took	 about	 eight	 months.	 the	 c	 source	
code	is	available	at	a	new	website	(www.coremark.org)	after	
free	registration.

coremark	shares	some	characteristics	with	Dhrystone.	
It	measures	integer	performance	only—no	floating	point.	
eemBc	made	this	decision	because	coremark	is	intended	
primarily	 for	 embedded	 processors,	 including	 small	 8-,	
16-,	and	32-bit	processors	still	 lacking	such	modern	con-
veniences	 as	 Fpus.	 coremark	 is	 small,	 though	 not	 quite	
as	small	as	Dhrystone.	requiring	only	2KB	of	memory	at	
run	time,	it	fits	entirely	into	a	small	L1	cache,	but	it’s	also	
suitable	for	benchmarking	cacheless	cores.	In	comparison,	
Dhrystone	2.1	needs	only	64	bytes	of	memory	at	run	time.

coremark	has	only	one	workload	and	three	algorithms—
or	 perhaps	 four,	 depending	 on	 how	 they’re	 counted.	 the	
first	algorithm	tests	matrix	manipulation,	using	16-bit	inte-
ger	inputs	that	generate	16-	or	32-bit	results,	depending	on	
the	processor	for	which	coremark	has	been	compiled.	pro-
cessors	with	efficient	multiply-accumulate	(mac)	instruc-
tions	should	do	well	in	this	test.

the	 second	algorithm	 tests	 state-machine	operation,	or	
control	 code.	 these	 are	 mostly	 byte-size	 instructions	 that	
compare	 values	 and	 branch	 to	 other	 instructions.	 Some	
embedded	 programs	 are	 filled	 with	 control	 code,	 whereas	
data-intensive	 programs	 have	 relatively	 little.	 If	 the	 target	
processor	has	branch	prediction,	it	will	do	better	in	this	test.

a	third	test	manipulates	a	linked	list	of	pointers	using	out-
puts	from	the	first	two	algorithms.	pointers	may	be	16-,	32-,	
or	64	bits	long,	depending	on	the	processor	for	which	core-
mark	was	compiled.	all	 three	tests	also	exercise	basic	read/
write	operations	to	memory.	the	bar	chart	in	Figure	1	shows	
the	distribution	of	instruction	types	in	these	three	tests.

Figure	2	shows	the	distribution	of	instructions	in	a	binary	
file	compiled	for	the	x86	architecture.	this	chart	resembles	
the	power	architecture	profile	in	Figure	1,	but	testers	had	to	
use	different	profiling	tools	for	the	two	architectures,	so	the	
instruction	labels	differ.

 Benchmark, Verify Thyself
the	final	coremark	test	is	a	cyclic	redun-
dancy	check	(crc),	which	serves	two	pur-
poses.	First,	crcs	are	common	in	embed-
ded	programs,	which	often	use	checksums	
to	verify	the	data	integrity	of	I/o	transfers	
and	other	operations.	Second,	coremark	
uses	 crcs	 to	 check	 itself—to	 verify	 the	
data	 integrity	 of	 its	 input	 and	 output.	
this	safeguard	helps	prevent	some	forms	
of	cheating	that	would	artificially	reduce	
or	eliminate	the	workload.

another	 verification	 feature	 is	 that	
seed	 values	 for	 coremark	 algorithms	
cannot	 be	 determined	 at	 compile	 time.	
coremark	generates	the	seeds	at	run	time	
and	 verifies	 them	 during	 the	 program	
run.	 at	 the	 end	 of	 the	 run,	 coremark	
performs	a	final	crc,	reports	whether	all	
the	 tests	 passed	 verification,	 summarizes	

Figure 1. CoreMark instruction profile (Power Architecture). This chart counts the number of
each type of instruction in each part of the benchmark program, as compiled for a Power proces-
sor. Load/store instructions dominate the code, followed by logical instructions, compares, and
branches. Notice that multiply and divide instructions appear only in the matrix-manipulation
test. (Data sources: IBM and EEMBC.)

statematrixlist
0%

20%

40%

60%

80%

100%
reg2reg
Load/Store
Logical
Shift/Rotate
Compare
Branch
Multiply/Divide
Add/Subtract

3eeMBc’s	dhrystone	Killer

	 © 	 I n - S t a t 	 J u n e 	 8 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

	information	about	the	test	run,	and	reports	
the	score.	the	score	is	the	number	of	itera-
tions	per	second	during	the	run,	so	higher	
scores	are	better.	Figure	3	shows	the	results	
of	running	coremark	on	an	x86	processor.

to	 produce	 an	 official	 score,	 eemBc	
requires	coremark	to	run	on	the	target	pro-
cessor	for	at	least	10	seconds.	Before	compil-
ing	 the	 source	 code,	 testers	 can	 adjust	 the	
number	 of	 iterations	 to	 ensure	 a	 test	 run	
meets	this	rule.	regardless	of	the	number	of	
iterations,	 coremark	 always	 calculates	 the	
final	 score	 as	 iterations	 per	 second.	 there-
fore,	 the	 score	 is	 directly	 comparable	 with	
coremark	 scores	 for	 other	 processors,	 no	
matter	 what	 their	 cpu	 architecture,	 clock	
frequency,	or	bus	speed	is.

coremark	 scores	aren’t	 fractions	or	mul-
tiples	of	a	baseline	machine,	in	the	way	that	
Dhrystone-mips	 scores	 relate	 to	 the	 VaX	
11/780	 from	 1977.	 MPR	 thinks	 eemBc	
missed	 a	 golden	 opportunity	 to	 define	 a	
“coremark	mips”	score	indexed	to	a	similarly	
beloved	 but	 more	 recent	 baseline	 computer.	
too	 bad	 there	 isn’t	 an	 embedded	 system	 as	
iconic	as	the	VaX.	as	a	substitute,	our	tongue-
in-cheek	suggestion	is	the	best-selling	personal	
computer	in	history—the	commodore	64.

Some Optimizations Allowed
as	with	other	eemBc	benchmarks,	eemBc	
requires	 coremark	 testers	 to	 disclose	 the	
development	 tools	 used	 to	 compile	 the	
source	 code,	 the	 optimization	 flags	 set	 for	
the	compiler,	and	the	speed	of	the	memory	
system	 attached	 to	 the	 cpu.	 of	 course,	
eemBc	can’t	police	these	rules	for	everyone,	
but	eemBc	requires	these	disclosures	from	
testers	 who	 post	 scores	 on	 the	 coremark	
website.	anyone	should	be	able	to	duplicate	
the	 posted	 results	 by	 using	 the	 same	 cpu,	
memory	system,	compiler,	and	flags.

a	novel	 feature	of	other	eemBc	bench-
marks	 is	a	rule	allowing	testers	to	optimize	
the	 benchmark	 code	 in	 ways	 that	 might	
be	 considered	 cheating	 if	 applied	 to	 other	
benchmarking	 programs.	 unmodified	
eemBc	code	produces	baseline	or	“out-of-
the-box”	 scores.	 modified	 code	 produces	
optimized	or	“full	fury”	scores.	these	options	
are	 a	 nod	 to	 reality.	 In	 real-world	 applica-
tions,	 embedded-software	 developers	 often	
use	some	rather	athletic	optimizations.

For	 example,	 testers	 can	 use	 any	 com-
piler	flags	they	want	and	even	rewrite	critical	

Figure 2. CoreMark instruction profile (x86). Integer operations and control-type instructions
(such as compares and branches) dominate the x86 binary. The no-operations (NOP) in the
state-machine test represent load-use delays, which the profiling tool used for Figure 1 didn’t
identify. Because the x86 is a CISC architecture, many instructions combine logical or arithmetic
operations with load/store operations, making the instruction profile less precise. (Data source:
EEMBC.)

Figure 3. Typical CoreMark results. MPR ran this test on a 1.2GHz Intel Core 2 Duo pro-
cessor with a 533MHz front-side bus. “CoreMark Size” is the buffer for each of the three
benchmark tests (one-third of 2KB, or 666 bytes). This processor needed 12.39 seconds to
run 40,000 iterations, yielding a score of 3,228.25 iterations per second. Compiler version
“CL15” is Microsoft’s Visual C++ compiler. The binary code fit entirely in the processor’s L1
cache. The remaining output shows that CoreMark verified the input seed and all the output
with a cyclic redundancy check (CRC).

matrixlist allstate
0%

20%

40%

60%

80%

100%

nopshift othercontrol stackint

4 eeMBc’s	dhrystone	Killer

	 © 	 I n - S t a t 	 J u n e 	 8 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

	portions	of	eemBc’s	benchmark	kernels	 in	assembly	 lan-
guage.	as	long	as	testers	disclose	the	compiler	flags	and	the	
use	 of	 any	 assembly	 routines,	 the	 optimizations	 are	 legal	
under	eemBc’s	full-fury	rules.

eemBc	 says	 coremark	 will	 continue	 this	 tradition,	
including	assembly-language	optimizations.	an	even	more	
intriguing	possibility	is	that	testers	could	modify	and	com-
pile	coremark	to	run	some	operations	in	parallel	on	a	mul-
ticore	processor.	coremark	could	be	the	poor	man’s	alterna-
tive	to	the	eemBc	multiBench	suite,	which	is	available	only	
to	 consortium	 members	 and	 licensees.	 (See	MPR 7/28/08-
01,	“eemBc’s	multiBench	arrives.”)

at	this	point,	however,	eemBc	hasn’t	finalized	the	rules	
for	 full-fury	 coremark	 benchmarking.	 until	 then,	 core-
mark	 scores	 will	 be	 considered	 out-of-the-box	 scores.	
eemBc	 permits	 compiler-flag	 optimizations	 for	 out-of-
the-box	scores	as	long	as	testers	disclose	the	flags	and	use	a	
publicly	available	compiler.

EEMBC’s Seal of Approval
Benchmarking	is	the	most	controversial	subject	in	comput-
ing.	(See	MPR 8/30/04-01,	“Benchmarking	the	Benchmarks.”)	
to	head	off	 some	disputes,	eemBc	will	offer	certification	
services	 for	coremark	 scores,	 as	 it	does	 for	other	eemBc	
benchmark	scores.

During	 the	 certification	 process,	 eemBc	 will	 check	
the	compiled	code	and	try	 to	replicate	 the	original	 tester’s	
reported	results.	If	anything	strange	turns	up,	eemBc	will	
consult	 with	 the	 original	 testers	 to	 resolve	 the	 anomalies.	
certified	 scores	 will	 be	 specially	 noted	 on	 the	 coremark	
website.	certification	 is	 free	 for	eemBc	members.	at	 this	
time,	 there’s	no	certification	option	 for	nonmembers.	 (It’s	
subtle	encouragement	to	join	eemBc.)

In	 a	 radical	 departure	 from	 other	 eemBc	 benchmarks,	
anyone	can	use	coremark	to	test	microprocessors	from	any	
vendor	and	post	scores	on	the	coremark	website.	this	rule	
change	provoked	debate	among	eemBc	members.	For	years,	
members	 have	 resisted	 proposals	 to	 allow	 competitive	 or	
independent	public	benchmarking.	testers	must	join	eemBc	
or	buy	a	license	to	get	the	benchmark	suites,	and	the	consor-
tium’s	 rules	 forbid	members	and	 licensees	 from	publishing	
scores	 for	 any	 processors	 but	 their	 own.	 privately,	 eemBc	
members	 often	 use	 the	 suites	 to	 compare	 the	 performance	

of	 their	 processors	 with	 those	 of	 competitors.	 competitive	
benchmarking	is	allowed,	as	long	as	scores	are	kept	private.

In	 contrast,	 coremark	 is	 wide	 open.	Vendor	a	 can	 test	
processors	 from	 Vendor	 B	 and	 post	 scores.	 Independent	
parties	can	test	processors	from	any	vendors	and	post	scores.	
testers	must	register	on	the	coremark	website	but	need	not	
disclose	their	identities.	eemBc	members	may	contest	the	
scores	 by	 posting	 their	 own	 scores	 and	 comments	 on	 the	
site.	Indeed,	the	site	is	devoting	a	blog	to	this	purpose.

nonmembers	must	suffer	in	silence—on	the	coremark	site,	
at	least.	of	course,	nonmembers	may	post	anything	they	want	
on	their	own	websites,	but	the	coremark	site	won’t	link	to	their	
rebuttals.	(again,	it’s	subtle	encouragement	to	join	eemBc.)

eemBc	hopes	cpu	vendors	will	post	source	code	for	the	
portable	layer	of	the	benchmark	program	on	the	coremark	
site	 for	public	download.	 In	 this	way,	 vendors	 can	ensure	
that	other	testers	will	use	a	porting	layer	optimized	for	the	
target	processor.	For	some	cpus,	testers	may	have	to	com-
pile	 multiple	 binaries.	 although	 an	 x86	 binary	 is	 nearly	
universal,	binaries	for	other	architectures	may	be	compiled	
specifically	 for	 particular	 development	 boards.	 Binaries	
compiled	for	microcontrollers	may	contain	code	specific	to	
their	integrated	peripherals,	such	as	uarts	and	timers.

although	 coremark,	 like	 Dhrystone,	 is	 a	 standalone	
program,	 testers	can	use	 it	 as	part	of	a	 larger	benchmark-
ing	regimen.	In	particular,	coremark	works	with	eemBc’s	
energyBench,	 which	 measures	 power	 consumption.	 How-
ever,	 energyBench	 isn’t	 free.	 It’s	 available	 only	 to	 eemBc	
members	 and	 licensees.	 (See	 MPR 7/17/06-02,	 “eemBc	
energizes	Benchmarking.”)

Analyzing CoreMark Scores
coremark	 is	 a	 quick-and-dirty	 benchmark	 program,	 so	
MPR	decided	to	give	it	a	quick-and-dirty	test.	one	goal	was	
to	determine	if	coremark	can	distinguish	among	different	
microarchitectures	 of	 the	 same	 cpu	 architecture.	 a	 good	
cpu	benchmarking	program	should	demonstrate	superior	
scores	 on	 superior	 microarchitectures	 instead	 of	 merely	
scaling	 linearly	with	clock	frequency.	our	second	goal	was	
to	compare	coremark	with	Dhrystone.

We	ran	coremark	and	Dhrystone	on	three	different	Intel	
x86	processors.	(they	are	pc	processors,	not	the	embedded	
processors	 for	which	coremark	 is	primarily	 intended,	but	
pcs	were	more	convenient.)	the	processors	were	a	1.0GHz	
celeron,	2.0GHz	celeron,	and	1.2GHz	core	2	Duo.

It’s	important	to	note	that	although	the	first	two	proces-
sors	are	celerons,	they	are	very	different	beasts.	the	1.0GHz	
celeron	is	based	on	Intel’s	p6	microarchitecture,	also	found	
in	the	pentium	II	and	pentium	III.	In	contrast,	the	2.0GHz	
celeron	is	based	on	Intel’s	later	netburst	microarchitecture,	
which	first	appeared	in	the	pentium	4.	core	2	Duo	is	based	
on	 Intel’s	 core	 microarchitecture	 and	 is	 a	 more	 recent	
design,	currently	being	superseded	by	core	i7	(nehalem).

Because	netburst	was	an	 improvement	over	 the	p6,	one	
would	expect	its	throughput	to	exceed	its	advantage	in	raw	

P r i c e & Av a i l a b i l i t y

EEMBC’s CoreMark benchmarking program is free
and available now. To download the C source code,
register at www.coremark.org. A small part of the
program requires porting to the target CPU archi-
tecture. In the future, CPU vendors may provide this
porting layer (as well as suggested compiler flags) on
the CoreMark website.

5eeMBc’s	dhrystone	Killer

	 © 	 I n - S t a t 	 J u n e 	 8 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

clock	speed.	 In	other	words,	 the	
2.0GHz	celeron	should	be	more
than	 twice	as	fast	as	the	1.0GHz	
celeron.	 and	 indeed,	 as	 the	
scores	 in	 table	 1	 show,	 core-
mark	found	the	2.0GHz	celeron	
to	be	three	times	faster	than	the	
1.0GHz	celeron.

Likewise,	 coremark	 rates	 the	
much	newer	core	2	Duo	processor	
more	favorably	than	the	netburst	
celeron,	despite	a	 significant	dis-
parity	 in	 clock	 frequency.	 core	 2	
Duo	runs	at	only	1.2GHz,	whereas	
the	 netburst	 celeron	 runs	 at	
2.0GHz—yet	coremark	says	core	
2	 Duo	 is	 17%	 faster.	 this	 result	
is	 what	 we	 would	 expect	 from	 a	
benchmark	 program	 that	 distin-
guishes	 between	 different	 micro-
architectures	 and	 isn’t	 fooled	 by	
raw	clock	speed.

In	 contrast,	 the	 Dhrystone	 scores	 are	 simply	 unbeliev-
able.	Dhrystone	says	 the	2.0GHz	celeron	with	newer	net-
burst	design	is	only	9%	faster	than	the	1.0GHz	celeron	with	
older	p6	design.	even	if	Dhrystone	scaled	linearly	with	clock	
frequency,	the	2.0GHz	celeron	should	be	100%	faster.

Dhrystone	 also	 reports	 a	 wildly	 different	 result	 when	
benchmarking	core	2	Duo.	It	says	the	newer	1.2GHz	pro-
cessor	 is	 122%	 faster	 than	 the	 2.0GHz	 celeron,	 whereas	
coremark	 says	 core	 2	 Duo	 is	 only	 17%	 faster.	 coremark	
is	more	credible,	because	core	2	Duo	is	running	at	a	much	
lower	clock	speed	but	has	an	improved	microarchitecture.

although	 core	 2	 Duo	 has	 a	 faster	 front-side	 bus	 than	
these	 celerons	 (533mHz	 vs.	 400mHz),	 it’s	 irrelevant	 for	
benchmark	 programs	 that	 fit	 entirely	 into	 the	 L1	 caches	
of	 these	 processors.	 and	 although	 core	 2	 Duo	 has	 twice	
as	many	processor	cores	as	these	celerons,	our	versions	of	
coremark	and	Dhrystone	were	not	modified	for	multicore	
execution,	so	they	were	running	on	only	one	core.	there-
fore,	our	quick-and-dirty	conclusion	is	that	coremark	is	a	
much	better	quick-and-dirty	benchmark	than	Dhrystone.

CoreMark’s Pros and Cons
MPR	 coverage	 of	 new	 processors	 rarely	 cites	 scores	 from	
the	 eemBc	 benchmark	 suites.	 one	 reason	 is	 that	 some	
cpu	vendors	 still	don’t	belong	 to	eemBc.	the	main	rea-
son	 is	 that	 most	 eemBc	 members	 won’t	 publicly	 release	
their	scores.	Yet	they	have	no	qualms	about	quoting	Dhrys-
tone	 mips.	 We	 hope	 coremark	 will	 replace—or,	 at	 least,	
	supplement—Dhrystone	 as	 the	 improved	 quick-and-dirty	
benchmark	 for	 new	 processors.	 In	 simulation,	 coremark	

can	even	estimate	the	performance	of	a	new	design	or	soft	
core	that	hasn’t	achieved	first	silicon.

coremark	addresses	several	shortcomings	of	Dhrystone:	
its	obsolescence,	lack	of	standardized	source	code,	artificial	
workloads,	 practically	 nonexistent	 testing	 methodology,	
compiler	vulnerabilities,	and	easy	cheating.

that	 said,	 coremark	 has	 shortcomings,	 too.	 certainly,	
one	 small	 program	 with	 a	 handful	 of	 algorithms	 cannot	
fully	characterize	the	performance	of	a	modern	micropro-
cessor.	even	eemBc	admits	that.	coremark	is	no	substitute	
for	the	fully	fleshed	eemBc	suites.

coremark	is	too	small	to	represent	most	modern	embed-
ded	software,	has	no	floating-point	math,	and	reports	only	
a	 single	 composite	 score	 that	 prevents	 any	 performance	
analysis	of	the	underlying	algorithms.	coremark’s	small	size	
fulfills	its	mission	of	isolating	cpu-core	performance,	but	it	
simulates	a	perfect	memory	system—an	unrealistic	picture	
of	real-world	performance,	in	most	cases.

although	 coremark	 is	 outclassed	 by	 the	 sophisticated	
eemBc	 suites,	 it	 has	 three	 advantages	 over	 them:	 it’s	 not	
restricted	 to	 eemBc	 members	 and	 licensees,	 it’s	 free,	 and	
anyone	 can	 post	 competitive	 scores	 for	 processors	 from	
different	 vendors.	 coremark	 has	 the	 potential	 to	 move	
	embedded-processor	benchmarking	from	eemBc’s	monas-
tery	to	the	masses.

the	best	thing	about	coremark	is	that	it’s	not	Dhrystone.	
or,	to	look	at	it	another	way,	it’s	“Dhrystone	3.0,”	overhauled	
and	updated	for	the	first	time	in	21	years.	although	core-
mark	 isn’t	 perfect,	 it’s	 much	 better	 than	 the	 most	 widely	
quoted	 and	 embarrassing	 measure	 of	 microprocessor	 per-
formance	the	industry	is	using	now.	

Intel
Celeron

Intel
Celeron

Intel
Core 2 Duo

CPU Architecture x86 x86 x86

Microarchitecture
P6

(Pentium II / III)
Netburst

(Pentium 4)
Core

(Core 2)

Processor Cores 1 1 2

Core Frequency
(Difference)

1.0GHz
—

2.0GHz
(+100% vs. 1.0GHz Celeron)

1.2GHz
(–40% vs. 2.0GHz Celeron)

Bus Frequency
(Difference)

400MHz
—

400MHz
—

533MHz
(+33% vs. Celerons)

Dhrystone 2.1
(Difference)

256
—

280
(+9% vs. 1.0GHz Celeron)

621
(+122% vs. 2.0GHz Celeron)

CoreMark
(Difference)

889
—

2748
(+209% vs. 1.0GHz Celeron)

3223
(+17% vs. 2.0GHz Celeron)

Table 1. CoreMark and Dhrystone scores for three Intel x86 processors, as benchmarked by MPR.
CoreMark reports credibly higher scores for newer microarchitectures instead of simply scaling the scores
at a linear rate with the processors’ clock speeds. The Dhrystone scores are much less credible. They
vary wildly and have little relationship to either clock speed or microarchitecture. (MPR submitted these
CoreMark scores to EEMBC, and they became the first results posted on the new CoreMark website.)

To subscribe to microprocessor	report, phone 480.483.4441 or visit www.mpronline.com

